MATERIALS AND METHODS: A school-based cross-sectional study was performed from January to July 2006 by random selection on Standard 1 to Standard 6 students of 10 primary schools in the Kota Bharu district. Visual acuity assessment was measured using logMAR ETDRS chart. Positive predictive value of uncorrected visual acuity equal or worse than 20/40, was used as a cut-off point for further evaluation by automated refraction and retinoscopic refraction.
RESULTS: A total of 840 students were enumerated but only 705 were examined. The prevalence of uncorrected visual impairment was seen in 54 (7.7%) children. The main cause of the uncorrected visual impairment was refractive error which contributed to 90.7% of the total, and with 7.0% prevalence for the studied population. Myopia is the most common type of refractive error among children aged 6 to 12 years with prevalence of 5.4%, followed by hyperopia at 1.0% and astigmatism at 0.6%. A significant positive correlation was noted between myopia development with increasing age (P <0.005), more hours spent on reading books (P <0.005) and background history of siblings with glasses (P <0.005) and whose parents are of higher educational level (P <0.005). Malays in suburban Kelantan (5.4%) have the lowest prevalence of myopia compared with Malays in the metropolitan cities of Kuala Lumpur (9.2%) and Singapore (22.1%).
CONCLUSION: The ethnicity-specific prevalence rate of myopia was the lowest among Malays in Kota Bharu, followed by Kuala Lumpur, and is the highest among Singaporean Malays. Better socio-economic factors could have contributed to higher myopia rates in the cities, since the genetic background of these ethnic Malays are similar.
DESIGN: A combined cross-sectional and prospective study on PAC and PACG.
METHODS: A total of 35 eyes were included in the study for each group of normal control, PAC, and PACG patients from eye clinics in Kota Bharu, state of Kelantan, Malaysia, from January 2007 to November 2009. The PAC and PACG patients were divided into thin and thick CCT groups. They were followed up for 12 to 18 months for visual field progression assessment with their mean Advanced Glaucoma Intervention Study (AGIS) score.
RESULTS: The CCT was 516.8 ± 26.0 µm for PAC and 509.7 ± 27.4 µm for PACG. Both were significantly thinner compared with the control group with CCT of 540 ± 27.8 µm (P < 0.001). There was a statistically significant increase in the mean AGIS score after 12.9 ± 1.7 months of follow-up in the thin CCT group for PACG (P = 0.002). However, no significant increase in the mean AGIS score was found for the thick CCT group in PACG and for both thin and thick CCT in PAC.
CONCLUSIONS: The PAC and PACG had statistically significant thinner CCT compared with the controls. Thin CCT was associated with visual field progression based on the mean AGIS score in PACG.