Displaying all 16 publications

Abstract:
Sort:
  1. Masni-Azian, Tanaka M
    Comput Biol Med, 2018 07 01;98:26-38.
    PMID: 29758454 DOI: 10.1016/j.compbiomed.2018.05.010
    Intervertebral disc degeneration involves changes in its material properties that affect the mechanical functions of the spinal system. However, the alteration of the biomechanics of a spinal segment through specific material degradation in a specific region is poorly understood. In this study, the influence of the constitutive material degeneration of disc tissues on the mechanics of a lower lumbar spinal unit was examined using a three-dimensional nonlinear finite element model of the L4-L5 functional spinal unit. Different grades of disc degeneration were simulated by introducing a degeneration factor to the corresponding material properties to represent fibrous nucleus, increased fibre and ground substance laxity, increased fibre stiffness and total annular fracture along posterior and posterolateral regions. The model was loaded with an axial compression of 500 N and pure moments of up to 10 Nm to simulate extension, flexion, lateral bending and axial rotation. To validate the model, the spinal motion and intradiscal pressure of healthy and degenerated discs with existing in vitro data were compared. The disc with a fibrous nucleus and the presence of intradiscal pressure increase the spinal instability during flexion and axial rotation, and the absence of intradiscal pressure increases the spinal instability in all directions. Bulging displacement and shear strains in the disc with total fracture and ground substance laxity are high in all of the loading cases. Our study could provide useful information to enhance our understanding of the influence of each constitutive component of the intervertebral disc on the mechanics of the spinal segment.
  2. Masni-Azian, Tanaka M
    Comput Methods Biomech Biomed Engin, 2017 Aug;20(10):1066-1076.
    PMID: 28532164 DOI: 10.1080/10255842.2017.1331345
    In the biomechanics field, material parameters calibration is significant for finite element (FE) model to ensure a legit estimation of biomechanical response. Determining an appropriate combination of calibration factors is challenging as each constitutive component responds differently. This study proposes a statistical factorial analysis approach using L16(4(5)) orthogonal array to evaluate material nonlinearity and applicable calibration factor of the intervertebral disc FE model in pure moment. The calibrated model exhibits improved agreement to the experimental findings for all directions. Appropriate combination of calibration parameter reduces the estimation gap to the experimental findings, ensuring agreeable biomechanical responses.
  3. Zulaziz N, Azhim A, Himeno N, Tanaka M, Satoh Y, Kinoshita M, et al.
    Hum. Cell, 2015 Oct;28(4):159-66.
    PMID: 25997703 DOI: 10.1007/s13577-015-0118-2
    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.
  4. Kamaluddin SN, Tanaka M, Wakamori H, Nishimura T, Ito T
    R Soc Open Sci, 2019 Jul;6(7):181382.
    PMID: 31417687 DOI: 10.1098/rsos.181382
    Despite the accumulating evidence suggesting the importance of phenotypic plasticity in diversification and adaptation, little is known about plastic variation in primate skulls. The present study evaluated the plastic variation of the mandible in Japanese macaques by comparing wild and captive specimens. The results showed that captive individuals are square-jawed with relatively longer tooth rows than wild individuals. We also found that this shape change resembles the sexual dimorphism, indicating that the mandibles of captive individuals are to some extent masculinized. By contrast, the mandible morphology was not clearly explained by ecogeographical factors. These findings suggest the possibility that perturbations in the social environment in captivity and resulting changes of androgenic hormones may have influenced the development of mandible shape. As the high plasticity of social properties is well known in wild primates, social environment may cause the inter- and intra-population diversity of skull morphology, even in the wild. The captive-wild morphological difference detected in this study, however, can also be possibly formed by other untested sources of variation (e.g. inter-population genetic variation), and therefore this hypothesis should be validated further.
  5. Al-Saari N, Amada E, Matsumura Y, Tanaka M, Mino S, Sawabe T
    PeerJ, 2019;7:e6769.
    PMID: 31024772 DOI: 10.7717/peerj.6769
    Biohydrogen is one of the most suitable clean energy sources for sustaining a fossil fuel independent society. The use of both land and ocean bioresources as feedstocks show great potential in maximizing biohydrogen production, but sodium ion is one of the main obstacles in efficient bacterial biohydrogen production. Vibrio tritonius strain AM2 can perform efficient hydrogen production with a molar yield of 1.7 mol H2/mol mannitol, which corresponds to 85% theoretical molar yield of H2 production, under saline conditions. With a view to maximizing the hydrogen production using marine biomass, it is important to accumulate knowledge on the effects of salts on the hydrogen production kinetics. Here, we show the kinetics in batch hydrogen production of V. tritonius strain AM2 to investigate the response to various NaCl concentrations. The modified Han-Levenspiel model reveals that salt inhibition in hydrogen production using V. tritonius starts precisely at the point where 10.2 g/L of NaCl is added, and is critically inhibited at 46 g/L. NaCl concentration greatly affects the substrate consumption which in turn affects both growth and hydrogen production. The NaCl-dependent behavior of fermentative hydrogen production of V. tritonius compared to that of Escherichia coli JCM 1649 reveals the marine-adapted fermentative hydrogen production system in V. tritonius. V. tritonius AM2 is capable of producing hydrogen from seaweed carbohydrate under a wide range of NaCl concentrations (5 to 46 g/L). The optimal salt concentration producing the highest levels of hydrogen, optimal substrate consumption and highest molar hydrogen yield is at 10 g/L NaCl (1.0% (w/v)).
  6. Kakuda T, Shojo H, Tanaka M, Nambiar P, Minaguchi K, Umetsu K, et al.
    PLoS One, 2016;11(6):e0158463.
    PMID: 27355212 DOI: 10.1371/journal.pone.0158463
    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.
  7. Alden DL, Friend J, Lee PY, Lee YK, Trevena L, Ng CJ, et al.
    Med Decis Making, 2018 01;38(1):14-25.
    PMID: 28691551 DOI: 10.1177/0272989X17715628
    BACKGROUND: Research suggests that desired family involvement (FI) in medical decision making may depend on cultural values. Unfortunately, the field lacks cross-cultural studies that test this assumption. As a result, providers may be guided by incomplete information or cultural biases rather than patient preferences.

    METHODS: Researchers developed 6 culturally relevant disease scenarios varying from low to high medical seriousness. Quota samples of approximately 290 middle-aged urban residents in Australia, China, Malaysia, India, South Korea, Thailand, and the USA completed an online survey that examined desired levels of FI and identified individual difference predictors in each country. All reliability coefficients were acceptable. Regression models met standard assumptions.

    RESULTS: The strongest finding across all 7 countries was that those who desired higher self-involvement (SI) in medical decision making also wanted lower FI. On the other hand, respondents who valued relational-interdependence tended to want their families involved - a key finding in 5 of 7 countries. In addition, in 4 of 7 countries, respondents who valued social hierarchy desired higher FI. Other antecedents were less consistent.

    CONCLUSION: These results suggest that it is important for health providers to avoid East-West cultural stereotypes. There are meaningful numbers of patients in all 7 countries who want to be individually involved and those individuals tend to prefer lower FI. On the other hand, more interdependent patients are likely to want families involved in many of the countries studied. Thus, individual differences within culture appear to be important in predicting whether a patient desires FI. For this reason, avoiding culture-based assumptions about desired FI during medical decision making is central to providing more effective patient centered care.

  8. Amin AKMR, Tanaka M, Al-Saari N, Feng G, Mino S, Ogura Y, et al.
    Syst Appl Microbiol, 2017 Jul;40(5):290-296.
    PMID: 28648725 DOI: 10.1016/j.syapm.2017.04.003
    Two phylogenetically distinct Vibrionaceae strains C4II189Tand C4V358Tisolated from reef seawater off Ishigaki Island, Japan, in 2014 were studied with advanced genome-based taxonomy approaches. All aspects of phylogenetic (16S rRNA phylogeny, MLSA), phenotypic and genetic (ANI, DDH, AAI, and the number of core genes) cohesions between the two identified species were high enough to propose them as members of a new genus within the family Vibrionaceae. Consequently, an eighth genus Thaumasiovibrio gen. nov. is proposed that contains two new species Thaumasiovibrio occultus sp. nov. strain C4II189T(=DSM 101554T=JCM 31629T) (type species) and Thaumasiovibrio subtropicus sp. nov. strain C4V358T(=DSM 101555T=JCM 31630T). Thaumasiovibrio species were phylogenetically distinct from the other Vibrionaceae species based on pyrH gene sequences. The combination of catalase negative, sensitivity to vibriostatic agent O/129, and green colony formation on TCBS for the phylogenetically affiliated strains was the diagnostic features for the current tentative identification of this genus.
  9. Murayama A, Hoshi M, Saito H, Kamamoto S, Tanaka M, Kawashima M, et al.
    Respiration, 2022;101(12):1088-1098.
    PMID: 36353778 DOI: 10.1159/000526576
    BACKGROUND: Financial relationships between healthcare professionals and pharmaceutical companies have historically caused conflicts of interest and unduly influenced patient care. However, little was known about such relationship and its effect in clinical practice among specialists in respiratory medicine.

    METHODS: Based on the retrospective analysis of payment data made available by all 92 pharmaceutical companies in Japan, this study evaluated the magnitude and trend of financial relationships between all board-certified Japanese respiratory specialists and pharmaceutical companies between 2016 and 2019. Magnitude and prevalence of payments for specialists were analyzed descriptively. The payment trends were assessed using the generalized estimating equations for the payment per specialist and the number of specialists with payments.

    RESULTS: Among all 7,114 respiratory specialists certified as of August 2021, 4,413 (62.0%) received a total of USD 53,547,391 and 74,195 counts from 72 (78.3%) pharmaceutical companies between 2016 and 2019. The median (interquartile range) 4-year combined payment values per specialist were USD 2,210 (USD 715-8,178). At maximum, one specialist received USD 495,332 personal payments over the 4 years. Both payments per specialist and number of specialists with payments significantly increased during the 4-year period, with 7.8% (95% CI: 5.5-9.8; p < 0.001) in payments and 1.5% (95% CI: 0.61-2.4; p = 0.001) in number of specialists with payments, respectively.

    CONCLUSION: The majority of respiratory specialists had increasingly received more personal payments from pharmaceutical companies for the reimbursement of lecturing, consulting, and writing between 2016 and 2019. These increasing financial relationships with pharmaceutical companies might cause conflicts of interest among respiratory physicians.

  10. Minayoshi Y, Maeda H, Yanagisawa H, Hamasaki K, Mizuta Y, Nishida K, et al.
    Drug Deliv, 2018 Nov;25(1):1067-1077.
    PMID: 29688069 DOI: 10.1080/10717544.2018.1464083
    Because of its multifaceted anti-inflammatory and immunomodulatory effects, delivering type-I interferon to Kupffer cells has the potential to function as a novel type of therapy for the treatment of various types of hepatitis. We report herein on the preparation of a Kupffer cell targeting type-I interferon, an albumin-IFNα2b fusion protein that contains highly mannosylated N-linked oligosaccharide chains, Man-HSA(D494N)-IFNα2b, attached by combining albumin fusion technology and site-directed mutagenesis. The presence of this unique oligosaccharide permits the protein to be efficiently, rapidly and preferentially distributed to Kupffer cells. Likewise IFNα2b, Man-HSA(D494N)-IFNα2b caused a significant induction in the mRNA levels of IL-10, IL-1Ra, PD-L1 in RAW264.7 cells and mouse isolated Kupffer cells, and these inductions were largely inhibited by blocking the interferon receptor. These data indicate that Man-HSA(D494N)-IFNα2b retained the biological activities of type-I interferon. Man-HSA(D494N)-IFNα2b significantly inhibited liver injury in Concanavalin A (Con-A)-induced hepatitis model mice, and consequently improved their survival rate. Moreover, the post-administration of Man-HSA(D494N)-IFNα2b at 2 h after the Con-A challenge also exerted hepato-protective effects. In conclusion, this proof-of-concept study demonstrates the therapeutic effectiveness and utility of Kupffer cell targeting type-I interferon against hepatitis via its anti-inflammatory and immunomodulatory actions.
  11. Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, et al.
    Nat Genet, 2019 08;51(8):1222-1232.
    PMID: 31332380 DOI: 10.1038/s41588-019-0458-z
    Noncoding repeat expansions cause various neuromuscular diseases, including myotonic dystrophies, fragile X tremor/ataxia syndrome, some spinocerebellar ataxias, amyotrophic lateral sclerosis and benign adult familial myoclonic epilepsies. Inspired by the striking similarities in the clinical and neuroimaging findings between neuronal intranuclear inclusion disease (NIID) and fragile X tremor/ataxia syndrome caused by noncoding CGG repeat expansions in FMR1, we directly searched for repeat expansion mutations and identified noncoding CGG repeat expansions in NBPF19 (NOTCH2NLC) as the causative mutations for NIID. Further prompted by the similarities in the clinical and neuroimaging findings with NIID, we identified similar noncoding CGG repeat expansions in two other diseases: oculopharyngeal myopathy with leukoencephalopathy and oculopharyngodistal myopathy, in LOC642361/NUTM2B-AS1 and LRP12, respectively. These findings expand our knowledge of the clinical spectra of diseases caused by expansions of the same repeat motif, and further highlight how directly searching for expanded repeats can help identify mutations underlying diseases.
  12. Pierot L, Jayaraman MV, Szikora I, Hirsch JA, Baxter B, Miyachi S, et al.
    AJNR Am J Neuroradiol, 2018 11;39(11):E112-E117.
    PMID: 30442688 DOI: 10.3174/ajnr.A5853
  13. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  14. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links