Displaying all 4 publications

Abstract:
Sort:
  1. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Nna VU, et al.
    Biomed Pharmacother, 2020 Apr;124:109879.
    PMID: 31991383 DOI: 10.1016/j.biopha.2020.109879
    AIMS: African walnuts were previously shown to modulate hepatic lipid bio-accumulation in obesity. Herein, we investigated the impact of the nuts on fat accumulation in adipose and ectopic regions, and associated oxidatiive stress status in obese rats.

    MATERIALS AND METHODS: Whole ethanol extract (WE) of the nuts, and its liquid-liquid fractions-ethyl acetate (ET) and residue (RES) were separately administered to obese rats for 6 weeks. The normal (NC) and obese (OC) controls received normal saline and the standard control (SC), orlistat (5.14 mg/kg b.w.), during the same period. Thereafter, the animals were euthanized and the adipose, brain, kidneys and heart tissues were studied.

    RESULTS: The change in body weight to naso-anal length which increased by 63.52 % in OC compared to NC (p < 0.05), decreased by 57.88, 85.80 and 70.20 % in WE, ET and RES-treated groups, respectively, relative to the OC (p < 0.05). Also, adipose tissue weights were lowered upon treatment with the extracts and fractions versus OC (p < 0.05). Total lipids, phospholipids, triacylglycerol and cholesterol concentrations in the studied tissues which were higher in OC (p < 0.05) were lowered (p < 0.05) and compared favorably with SC. Further, malondialdehyde levels in the tissues were lowered upon treatment, compared to the OC (p < 0.05). Glutathione level and activities of glutathione peroxidase, superoxide dismutase and glutathione-S-transferase which were decreased (p < 0.05) in OC, were restored upon treatment with the extracts, relative to the obese control (p < 0.05).

    SIGNIFICANCE: African walnuts assuaged lipogenesis, oxidative stress and peroxidation in extra-hepatic tissues of obese rats, hence, may attenuate ectopic fat accumulation and its associated pathogenesis.

  2. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Rotimi SO, et al.
    PMID: 31339080 DOI: 10.2174/1871530319666190724114729
    BACKGROUND: Obesity is characterized by increased body fat and involves an imbalance between the synthesis and degradation of lipids.

    OBJECTIVE: The study aimed to investigate the effect of African walnuts (Tetracarpidium conophorum) on lipids storage and the regulatory enzymes of hepatic lipid metabolism in obese rats.

    METHODS: Nuts were extracted in ethanol (WE) and further separated to obtain the ethyl-acetate fraction (ET) and the residue (RES). These were administered orally to 3 groups of monosodium glutamate- obese rats (n = 6), respectively, for 6 weeks. Other groups in the study were: normal (NC), obese control (OC) and standard control (SC) which received orlistat. Hepatic total lipids, total phospholipids, triacylglycerol (TG), total cholesterol (TCHOL), 3-hydroxyl-3-methylglutaryl-CoA (HMG-CoA) reductase and paraoxonase were studied.

    RESULTS: Total lipids, TG and TCHOL which increased in OC compared to NC group, decreased. HMG-CoA reductase activity decreased in the 3 study groups relative to OC. Paraoxonase activity which decreased in OC was up-regulated, while the magnitude of hepatic cholesterol decreased from 94.32 % in OC to 52.19, 65.43 and 47.04 % with WE, ET and RES, respectively. Flavonoids, alkaloids, glycosides, tannins and saponins were detected in the nut. GC-MS analysis revealed 16, 18 and 10 volatile components in WE, ET and RES, respectively. Unsaturated fatty acids (linolenic acids: 33.33, 47.95 and 50.93 %, and α-linolenic acids: 25, 19.66 and 26.63 %) in WE, ET and RES, respectively, are the most abundant, and likely to be responsible for the observed activity.

    CONCLUSION: African walnuts can prevent hepatic lipid accumulation through reciprocal actions on HMG-CoA reductase and paraoxonase in obesity.

  3. Mohite P, Yadav V, Pandhare R, Maitra S, Saleh FM, Saleem RM, et al.
    ACS Omega, 2024 Feb 20;9(7):7277-7295.
    PMID: 38405458 DOI: 10.1021/acsomega.3c06501
    In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.
  4. Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, et al.
    Biomed Pharmacother, 2024 Jan;170:116083.
    PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083
    As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links