Displaying all 6 publications

Abstract:
Sort:
  1. Woo HJ, Arof AK
    PMID: 26945998 DOI: 10.1016/j.saa.2016.02.034
    A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94×10(-7)Scm(-1) to 3.82×10(-5)Scm(-1). Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN(-) stretching mode (2030-2090cm(-1)). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4(+) complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.
  2. Aziz SB, Kadir MFZ, Hamsan MH, Woo HJ, Brza MA
    Sci Rep, 2019 Sep 11;9(1):13163.
    PMID: 31511610 DOI: 10.1038/s41598-019-49715-8
    There is a huge request for the development of low dielectric constant polymeric materials for microelectronic applications. In thisstudy, polymer blends based on PVA:POZ with low dielectric constant has been fabricated. The results of XRD indicate that crystalline domain is enhanced at higher POZ concentration. Brilliant phases between spherulitesare attributed to the enhanced crystalline domains at high POZ content. White portions are appeared in SEM images on the surface of PVA:POZ blends. From EDX analysis, these leaked portions are referred to the POZ material. The number and sizes of the white portions were also found to increase with increasing the POZ content. Using electrical equivalent circuits (EEC), electrical impedance plots (Z″ vs Z') are fitted for all the samples. The results of impedance study illustrated that the resistivity of the samples increases with increasing POZ concentration. From dielectric measurements, dielectric constant was found to decrease with the introduction of more POZ into the PVA polymer. It is found to be about 1.68 at 40 wt.% POZ. Insulating materials with low dielectric constant (ε' 
  3. Sadiq NM, Abdulwahid RT, Aziz SB, Woo HJ, Kadir MFZ
    Int J Biol Macromol, 2024 Apr;265(Pt 1):130751.
    PMID: 38471616 DOI: 10.1016/j.ijbiomac.2024.130751
    The challenge in front of EDLC device is their low energy density compared to their battery counter parts. In the current study, a green plasticized nanocomposite sodium ion conducting polymer blend electrolytes (PNSPBE) was developed by incorporating plasticized Chitosan (CS) blended with polyvinyl alcohol (PVA), doped with NaBr salt with various concentration of CaTiO3 nanoparticles. The most optimized PNSPBE film was subsequently utilized in an EDLC device to evaluate its effectiveness both as an electrolyte and a separator. Structural and morphological changes were assessed using XRD and SEM techniques. The PNSPBE film demonstrated a peak ionic conductivity of 9.76×10-5 S/cm, as determined through EIS analysis. The dielectric and AC studies provided further confirmation of structural modifications within the sample. Both TNM and LSV analyses affirmed the suitability of the prepared electrolyte for energy device applications, evidenced by its adequate ion transference number and an electrochemical potential window of 2.86 V. Electrochemical properties were assessed via CV and GCD techniques, confirming non-Faradaic ion storage, indicated by the rectangular CV pattern at low scan rates. The parameters associated with the designed EDLC device including specific capacitance, ESR, power density (1950 W/kg) and energy density (12.3 Wh/kg) were determined over 1000 cycles.
  4. Wang J, Shao Y, Ma Y, Zhang D, Aziz SB, Li Z, et al.
    ACS Nano, 2024 Apr 09;18(14):10230-10242.
    PMID: 38546180 DOI: 10.1021/acsnano.4c00599
    The realization of sodium-ion devices with high-power density and long-cycle capability is challenging due to the difficulties of carrier diffusion and electrode fragmentation in transition metal selenide anodes. Herein, a Mo/W-based metal-organic framework is constructed by a one-step method through rational selection, after which MoWSe/C heterostructures with large angles are synthesized by a facile selenization/carbonization strategy. Through physical characterization and theoretical calculations, the synthesized MoWSe/C electrode delivers obvious structural advantages and excellent electrochemical performance in an ethylene glycol dimethyl ether electrolyte. Furthermore, the electrochemical vehicle mechanism of ions in the electrolyte is systematically revealed through comparative analyses. Resultantly, ether-based electrolytes advantageously construct stable solid electrolyte interfaces and avoid electrolyte decomposition. Based on the above benefits, the Na half-cell assembled with MoWSe/C electrodes demonstrated excellent rate capability and a high specific capacity of 347.3 mA h g-1 even after cycling 2000 cycles at 10 A g-1. Meanwhile, the constructed sodium-ion capacitor maintains ∼80% capacity retention after 11,000 ultralong cycles at a high-power density of 3800 W kg-1. The findings can broaden the mechanistic understanding of conversion anodes in different electrolytes and provide a reference for the structural design of anodes with high capacity, fast kinetics, and long-cycle stability.
  5. Dannoun EMA, Aziz SB, Brza MA, M Nofal M, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33138114 DOI: 10.3390/polym12112531
    In this work, plasticized magnesium ion-conducting polymer blend electrolytes based on chitosan:methylcellulose (CS:MC) were prepared using a solution cast technique. Magnesium acetate [Mg(CH3COO)2] was used as a source of the ions. Nickel metal-complex [Ni(II)-complex)] was employed to expand the amorphous phase. For the ions dissociation enhancement, glycerol plasticizer was also engaged. Incorporating 42 wt% of the glycerol into the electrolyte system has been shown to improve the conductivity to 1.02 × 10-4 S cm-1. X-ray diffraction (XRD) analysis showed that the electrolyte with the highest conductivity has a minimum crystallinity degree. The ionic transference number was estimated to be more than the electronic transference number. It is concluded that in CS:MC:Mg(CH3COO)2:Ni(II)-complex:glycerol, ions are the primary charge carriers. Results from linear sweep voltammetry (LSV) showed electrochemical stability to be 2.48 V. An electric double-layer capacitor (EDLC) based on activated carbon electrode and a prepared solid polymer electrolyte was constructed. The EDLC cell was then analyzed by cyclic voltammetry (CV) and galvanostatic charge-discharge methods. The CV test disclosed rectangular shapes with slight distortion, and there was no appearance of any redox currents on both anodic and cathodic parts, signifying a typical behavior of EDLC. The EDLC cell indicated a good cyclability of about (95%) for throughout of 200 cycles with a specific capacitance of 47.4 F/g.
  6. Feachem RGA, Chen I, Akbari O, Bertozzi-Villa A, Bhatt S, Binka F, et al.
    Lancet, 2019 09 21;394(10203):1056-1112.
    PMID: 31511196 DOI: 10.1016/S0140-6736(19)31139-0
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links