Purpose: We measured the vertical ground reaction force (vGRF) of the hip, knee, and ankle joints during normal gait in normal patients, adolescent idiopathic scoliosis (AIS) patients with a Cobb angle <40° and in AIS patients with spinal fusion. We aimed to investigate whether vGRF in the aforementioned joints is altered in these three groups of patients.
Overview of Literature: vGRF of the lower limb joints may be altered in these groups of patients. Although it is known that excessive force in the joints may induce early arthritis, there is limited relevant information in the literatures.
Methods: We measured vGRF of the hip, knee, and ankle joints during heel strike, early stance, mid stance, and toe-off phases in normal subjects (group 1, n=14), AIS patients with Cobb angle <40° (group 2, n=14), and AIS patients with spinal fusion (group 3, n=13) using a gait analysis platform. Fifteen auto-reflective tracking markers were attached to standard anatomical landmarks in both the lower limbs. The captured motion images were used to define the orientations of the body segments and force exerted on the force plate using computer software. Statistical analysis was performed using independent t-test and analysis of variance to examine differences between the right and left sides as well as those among the different subject groups.
Results: The measurements during the four gait phases in all the groups did not show any significant difference (p>0.05). In addition, no significant difference was found in the vGRF measurements of all the joints among the three groups (p>0.05).
Conclusions: A Cobb angle <40° and spinal fusion did not significantly create imbalance or alter vGRF of the lower limb joints in AIS patients.
PURPOSE: The C1 and C2 laminas in the Malaysian Malay population were analyzed for the feasibility of fitting 3.5-mm laminar screws in a cross configuration.
OVERVIEW OF LITERATURE: Morphometric analysis of the C1 and C2 laminas has been performed for various populations but not for the Malaysian Malay population.
METHODS: A total of 330 CT cervical images were measured to establish the bicortical diameter of the C1 and C2 laminas as well as their height and length. The C1 posterior tubercle bicortical diameter and height were also determined from these images. All parameters were measured up to 0.1 mm, and statistical analysis was performed using IBM SPSS Statistics ver. 24.0 (IBM Corp., Armonk, NY, USA). An independent t -test and the Pearson chi-square test were used to determine the mean difference and screw acceptance.
RESULTS: The means of the C1 lamina measurements were 5.79±1.19 mm in diameter, 9.76±1.51 mm in height, and 20.70±1.86 mm in length. The means of the measurements of the posterior tubercle were 7.20±1.88 mm in diameter and 10.51±1.68 mm in height. The means of the C2 lamina measurements were 5.74±1.31 mm in diameter, 11.76±1.69 mm in height, and 24.96±2.56 mm in length. Overall 65.5% of C1 and 80.3% of C2 laminas are able to accept 3.5-mm screws in a cross configuration. Screw acceptability is similar between the right and left sides (p >0.05). However, males have a higher screw acceptability compared with females (p <0.05), except for the C2 left lamina.
CONCLUSIONS: It is feasible to insert a 3.5-mm screw in a cross configuration in the C1 and C2 laminas of the Malaysian Malay population, especially in males. However, a CT scan should be performed prior to the operation to determine screw acceptability and to estimate screw sizes.