Displaying all 5 publications

Abstract:
Sort:
  1. Mamat N, Abu A, Yusoff NR
    Zool Stud, 2021;60:e47.
    PMID: 35003341 DOI: 10.6620/ZS.2021.60-47
    Studies on Odonata have gained attention worldwide as well as locally in Malaysia. Although there is a wealth of data available to be utilized for solving taxonomic problems, ecological and behavioural research areas are more favoured than taxonomy and systematics. Thus, there are confusions over how to correctly identify closely related and sympatric species, especially in female odonates. One such example is in the genus Rhinocypha. Consequently, the present study focuses on taxonomic work, employing multi-approaches in the form of morphological (morphological diagnostics, Field Emission Scanning Electron Microscope (FESEM) and geometric morphometric analysis), applying the molecular technique. Seventeen morphological characteristics were created to differentiate between the females of Rhinocypha spp. A FESEM was used on the female's ovipositor to focus on the anal appendages and sheathing valve (V3). Also, the phylogenetic patterns expressed by COI and 16S rRNA genes, and canonical variate analysis for the wing geometric morphometric revealed three clusters that supported the distinction of the Rhinocypha group. In summary, this study effectively developed an integrated approach of classic morphological and trendy molecular, combined with FESEM microscopy techniques, which provided corroborative evidence and resolved taxonomic uncertainties.
  2. Noorhidayah M, Azrizal-Wahid N, Low VL, Yusoff NR
    PLoS One, 2024;19(4):e0301392.
    PMID: 38578719 DOI: 10.1371/journal.pone.0301392
    Despite is known to have widespread distribution and the most active species of the family Chlorocyphidae, the molecular data of Rhinocypha fenestrella (Rambur, 1842) are relatively scarce. The present study is the first that examined the genetic diversity and phylogeographic pattern of the peacock jewel-damselfly R. fenestrella by sequencing the cytochrome C oxidase I (cox1) and 16S rRNA gene regions from 147 individuals representing eight populations in Malaysia. A total of 26 and 10 unique haplotypes were revealed by the cox1 and 16S rRNA genes, respectively, and 32 haplotypes were recovered by the concatenated sequences of cox1+16S. Analyses indicated that haplotype AB2 was the most frequent and the most widespread haplotype in Malaysia while haplotype AB1 was suggested as the common ancestor haplotype of the R. fenestrella that may arose from the Negeri Sembilan as discovered from cox1+16S haplotype network analysis. Overall haplotype and nucleotide diversities of the concatenated sequences were Hd = 0.8937 and Pi = 0.0028, respectively, with great genetic differentiation (FST = 0.6387) and low gene flow (Nm = 0.14). Population from Pahang presented the highest genetic diversity (Hd = 0.8889, Pi = 0.0022, Nh = 9), whereas Kedah population demonstrated the lowest diversity (Hd = 0.2842, Pi = 0.0003, Nh = 4). The concatenated sequences of cox1+16S showed genetic divergence ranging from 0.09% to 0.97%, whereas the genetic divergence for cox1 and 16S rRNA genes were 0.16% to 1.63% and 0.01% to 0.75% respectively. This study provides for the first-time insights on the intraspecific genetic diversity, phylogeographic pattern and ancestral haplotype of Rhinocypha fenestrella. The understanding of molecular data especially phylogeographic pattern can enhance the knowledge about insect origin, their diversity, and capability to disperse in particular environments.
  3. Ravi R, Zulkrnin NSH, Rozhan NN, Nik Yusoff NR, Mat Rasat MS, Ahmad MI, et al.
    PLoS One, 2018;13(11):e0206982.
    PMID: 30399167 DOI: 10.1371/journal.pone.0206982
    BACKGROUND: The resistance problem of dengue vectors to different classes of insecticides that are used for public health has raised concerns about vector control programmes. Hence, the discovery of alternative compounds that would enhance existing tools is important for overcoming the resistance problem of using insecticides in vectors and ensuring a chemical-free environment. The larvicidal effects of Azolla pinnata extracts by using two different extraction methods with methanol solvent against Aedes in early 4th instar larvae was conducted.

    METHODS: The fresh Azolla pinnata plant from Kuala Krai, Kelantan, Malaysia was used for crude extraction using Soxhlet and maceration methods. Then, the chemical composition of extracts and its structure were identified using GCMS-QP2010 Ultra (Shimadzu). Next, following the WHO procedures for larval bioassays, the extracts were used to evaluate the early 4th instar larvae of Aedes mosquito vectors.

    RESULTS: The larvicidal activity of Azolla pinnata plant extracts evidently affected the early 4th instar larvae of Aedes aegypti mosquito vectors. The Soxhlet extraction method had the highest larvicidal effect against Ae. aegypti early 4th instar larvae, with LC50 and LC95 values of 1093 and 1343 mg/L, respectively. Meanwhile, the maceration extraction compounds were recorded with the LC50 and LC95 values of 1280 and 1520 mg/L, respectively. The larvae bioassay test for Ae. albopictus showed closely similar values in its Soxhlet extraction, with LC50 and LC95 values of 1035 and 1524 mg/L, compared with the maceration extraction LC50 and LC95 values of 1037 and 1579 mg/L, respectively. The non-target organism test on guppy fish, Poecilia reticulata, showed no mortalities and posed no toxic effects. The chemical composition of the Azolla pinnata plant extract has been found and characterized as having 18 active compounds for the Soxhlet method and 15 active compounds for the maceration method.

    CONCLUSIONS: Our findings showed that the crude extract of A. pinnata bioactive molecules are effective and have the potential to be developed as biolarvicides for Aedes mosquito vector control. This study recommends future research on the use of active ingredients isolated from A. pinnata extracts and their evaluation against larvicidal activity of Aedes in small-scale field trials for environmentally safe botanical insecticide invention.

  4. Husna Zulkrnin NS, Rozhan NN, Zulkfili NA, Nik Yusoff NR, Rasat MSM, Abdullah NH, et al.
    J Parasitol Res, 2018;2018:1383186.
    PMID: 30050688 DOI: 10.1155/2018/1383186
    Dengue is vector-borne diseases with 390 million infections per year extending over 120 countries of the world. Aedes aegypti (L.) (Diptera: Culicidae) is a primary vector for dengue viral infections for humans. Current focus on application of natural product against mosquito vectors has been the main priority for research due to its eco-safety. The extensive use of chemical insecticides has led to severe health problems, environmental pollution, toxic hazards to human and nontarget species, and development of insecticide resistance on mosquitoes. Azolla pinnata is an aquatic fern and predominantly used as feed in poultry industry and as fertilizer in agricultural field for enhancing the fertility of rice paddy soil. The present study was conducted to explore the larvicidal efficacy of A. pinnata using fresh and powdered form against late third-stage larvae (6 days, 5 mm in larvae body length) of Ae. aegypti (L.) (Diptera: Culicidae). The larvicidal bioassays were performed using World Health Organization standard larval susceptibility test method for different concentration for powdered and fresh A. pinnata. Powdered A. pinnata concentration used during larvicidal bioassay ranges from 500ppm to 2000ppm; meanwhile, fresh A. pinnata ranges from 500ppm to 9,000,000 ppm. The highest mortality was at 1853 ppm for powdered A. pinnata compared with fresh A. pinnata at 2,521,535 ppm, while the LC50 for both powdered and fresh A. pinnata recorded at 1262 ppm and 1853 ppm, respectively. Finally, the analysis of variance (ANOVA) showed significant difference on Ae. aegypti larval mortality (F=30.439, df=1, p≤0.001) and concentration (F=20.002, df=1, p≤0.001) compared to powdered and fresh A. pinnata at 24-hour bioassay test. In conclusion, the powdered A. pinnata serves as a good larvicidal agent against Ae. aegypti (L.) (Diptera: Culicidae) and this study provided information on the lethal concentration that may have potential for a more eco-friendly Aedes mosquito control program.
  5. Mohd Ghazi R, Nik Yusoff NR, Abdul Halim NS, Wahab IRA, Ab Latif N, Hasmoni SH, et al.
    Bioengineered, 2023 Dec;14(1):2259526.
    PMID: 37747278 DOI: 10.1080/21655979.2023.2259526
    The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links