Displaying all 9 publications

Abstract:
Sort:
  1. Zainal Ariffin SH, Yamamoto Z, Zainol Abidin IZ, Megat Abdul Wahab R, Zainal Ariffin Z
    ScientificWorldJournal, 2011;11:1788-803.
    PMID: 22125437 DOI: 10.1100/2011/761768
    Tooth movement induced by orthodontic treatment can cause sequential reactions involving the periodontal tissue and alveolar bone, resulting in the release of numerous substances from the dental tissues and surrounding structures. To better understand the biological processes involved in orthodontic treatment, improve treatment, and reduce adverse side effects, several of these substances have been proposed as biomarkers. Potential biological markers can be collected from different tissue samples, and suitable sampling is important to accurately reflect biological processes. This paper covers the tissue changes that are involved during orthodontic tooth movement such as at compression region (involving osteoblasts), tension region (involving osteoclasts), dental root, and pulp tissues. Besides, the involvement of stem cells and their development towards osteoblasts and osteoclasts during orthodontic treatment have also been explained. Several possible biomarkers representing these biological changes during specific phenomenon, that is, bone remodelling (formation and resorption), inflammation, and root resorption have also been proposed. The knowledge of these biomarkers could be used in accelerating orthodontic treatment.
  2. Zainal Ariffin SH, Mohamed Rozali NA, Megat Abdul Wahab R, Senafi S, Zainol Abidin IZ, Zainal Ariffin Z
    Cytotechnology, 2016 Aug;68(4):675-86.
    PMID: 26231833 DOI: 10.1007/s10616-014-9819-8
    Transplantation of stem cells requires a huge amount of cells, deeming the expansion of the cells in vitro necessary. The aim of this study is to define the optimal combination of basal medium and serum for the expansion of suspension peripheral blood mononucleated stem cells (PBMNSCs) without resulting in loss in the differentiation potential. Mononucleated cells were isolated from both mice and human peripheral blood samples through gradient centrifugation and expanded in α-MEM, RPMI, MEM or DMEM supplemented with either NBCS or FBS. The suspension cells were then differentiated to osteoblast. Our data suggested that α-MEM supplemented with 10 % (v/v) NBCS gives the highest fold increase after 14 days of culture for both mice and human PBMNSCs, which were ~1.51 and ~2.01 times, respectively. The suspension PBMNSCs in the respective medium were also able to maintain osteoblast differentiation potential as supported by the significant increase in ALP specific activity. The cells are also viable during the differentiated states when using this media. All these data strongly suggested that α-MEM supplemented with 10 % NBCS is the best media for the expansion of both mouse and human suspension PBMNSCs.
  3. Megat Abdul Wahab R, Mohamed Rozali NA, Senafi S, Zainol Abidin IZ, Zainal Ariffin Z, Zainal Ariffin SH
    PeerJ, 2017;5:e3180.
    PMID: 28626603 DOI: 10.7717/peerj.3180
    BACKGROUND: Stem cells are normally isolated from dental pulps using the enzymatic digestion or the outgrowth method. However, the effects of the isolation method on the quality of the isolated stem cells are not studied in detail in murine models. The aim of this study was to compare the matrices secreted by osteoblast and chondrocytes differentiated from dental pulp stem cells isolated through different means.

    METHOD: DPSC from murine incisors were isolated through either the outgrowth (DPSC-OG) or the enzymatic digestion (DPSC-ED) method. Cells at passage 4 were used in this study. The cells were characterized through morphology and expression of cell surface markers. The cells' doubling time when cultured using different seeding densities was calculated and analyzed using one-way ANOVA and Tukey's multiple comparison post-test. The ability of cells to differentiate to chondrocyte and osteoblast was evaluated through staining and analysis on the matrices secreted.

    RESULTS: Gene expression analysis showed that DPSC-OG and DPSC-ED expressed dental pulp mesenchymal stem cell markers, but not hematopoietic stem cell markers. The least number of cells that could have been used to culture DPSC-OG and DPSC-ED with the shortest doubling time was 5 × 10(2) cells/cm(2) (11.49 ± 2.16 h) and 1 × 10(2) cells/cm(2) (10.55 h ± 0.50), respectively. Chondrocytes differentiated from DPSC-ED produced  2 times more proteoglycan and at a faster rate than DPSC-OG. FTIR revealed that DPSC-ED differentiated into osteoblast also secreted matrix, which more resembled a calvaria.

    DISCUSSION: Isolation approaches might have influenced the cell populations obtained. This, in turn, resulted in cells with different proliferation and differentiation capability. While both DPSC-OG and DPSC-ED expressed mesenchymal stem cell markers, the percentage of cells carrying each marker might have differed between the two methods. Regardless, enzymatic digestion clearly yielded cells with better characteristics than outgrowth.

  4. Abdul Wahab RM, Abu Kasim N, Senafi S, Jemain AA, Zainol Abidin IZ, Shahidan MA, et al.
    Oral Health Dent Manag, 2014 Jun;13(2):194-9.
    PMID: 24984622
    Profiles of orthodontic tooth movement biomarkers, i.e., Lactate Dehydrogenase (LDH), Aspartate Aminotransferase (AST), Tartrate-resistant Acid Phosphatase (TRAP) and Alkaline Phosphatase (ALP), using Self-ligating Brackets (SLBs) and possible relationships among their activities and total enzymes produced were determined.
  5. Zainal Ariffin SH, Kermani S, Zainol Abidin IZ, Megat Abdul Wahab R, Yamamoto Z, Senafi S, et al.
    Stem Cells Int, 2013;2013:250740.
    PMID: 24348580 DOI: 10.1155/2013/250740
    Dental pulp tissue contains dental pulp stem cells (DPSCs). Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells) are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146(+) , Cd166(+) , and Cd31(-) in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.
  6. Hadzir SN, Ibrahim SN, Abdul Wahab RM, Zainol Abidin IZ, Senafi S, Ariffin ZZ, et al.
    Cytotherapy, 2014 May;16(5):674-82.
    PMID: 24176546 DOI: 10.1016/j.jcyt.2013.07.013
    Suspension mononuclear cells (MNCs) can be differentiated into osteoblasts with the induction of ascorbic acid and β-glycerophosphate. The aim of this study was to determine the ability of suspension MNCs to differentiate into osteoblasts using ascorbic acid only.
  7. Zainol Abidin IZ, Fazry S, Jamar NH, Ediwar Dyari HR, Zainal Ariffin Z, Johari AN, et al.
    Sci Rep, 2020 08 25;10(1):14165.
    PMID: 32843675 DOI: 10.1038/s41598-020-70962-7
    In Malaysia, Piper sarmentosum or 'kaduk' is commonly used in traditional medicines. However, its biological effects including in vivo embryonic toxicity and tissue regenerative properties are relatively unknown. The purpose of this study was to determine zebrafish (Danio rerio) embryo toxicities and caudal fin tissue regeneration in the presence of P. sarmentosum aqueous extracts. The phytochemical components and antioxidant activity of the extract were studied using GC-MS analysis and DPPH assay, respectively. Embryo toxicity tests involving survival, heartbeat, and morphological analyses were conducted to determine P. sarmentosum extract toxicity (0-60 µg/mL); concentrations of 0-400 µg/mL of the extract were used to study tissue regeneration in the zebrafish caudal fin. The extract contained several phytochemicals with antioxidant activity and exhibited DPPH scavenging activity (IC50 = 50.56 mg/mL). Embryo toxicity assays showed that a concentration of 60 μg/mL showed the highest rates of lethality regardless of exposure time. Slower embryogenesis was observed at 40 µg/mL, with non-viable embryos first detected at 50 µg/mL. Extracts showed significant differences (p 
  8. Zainal Ariffin SH, Lim KW, Megat Abdul Wahab R, Zainal Ariffin Z, Rus Din RD, Shahidan MA, et al.
    PeerJ, 2022;10:e14174.
    PMID: 36275474 DOI: 10.7717/peerj.14174
    BACKGROUND: There have been promising results published regarding the potential of stem cells in regenerative medicine. However, the vast variety of choices of techniques and the lack of a standard approach to analyse human osteoblast and osteoclast differentiation may reduce the utility of stem cells as a tool in medical applications. Therefore, this review aims to systematically evaluate the findings based on stem cell differentiation to define a standard gene expression profile approach.

    METHODS: This review was performed following the PRISMA guidelines. A systematic search of the study was conducted by retrieving articles from the electronic databases PubMed and Web of Science to identify articles focussed on gene expression and approaches for osteoblast and osteoclast differentiation.

    RESULTS: Six articles were included in this review; there were original articles of in vitro human stem cell differentiation into osteoblasts and osteoclasts that involved gene expression profiling. Quantitative polymerase chain reaction (qPCR) was the most used technique for gene expression to detect differentiated human osteoblasts and osteoclasts. A total of 16 genes were found to be related to differentiating osteoblast and osteoclast differentiation.

    CONCLUSION: Qualitative information of gene expression provided by qPCR could become a standard technique to analyse the differentiation of human stem cells into osteoblasts and osteoclasts rather than evaluating relative gene expression. RUNX2 and CTSK could be applied to detect osteoblasts and osteoclasts, respectively, while RANKL could be applied to detect both osteoblasts and osteoclasts. This review provides future researchers with a central source of relevant information on the vast variety of gene expression approaches in analysing the differentiation of human osteoblast and osteoclast cells. In addition, these findings should enable researchers to conduct accurately and efficiently studies involving isolated human stem cell differentiation into osteoblasts and osteoclasts.

  9. Zainol Abidin IZ, Manogaran T, Abdul Wahab RM, Karsani SA, Yazid MD, Yazid F, et al.
    Curr Stem Cell Res Ther, 2023;18(3):417-428.
    PMID: 35762553 DOI: 10.2174/1574888X17666220627145424
    BACKGROUND: Proteomic is capable of elucidating complex biological systems through protein expression, function, and interaction under a particular condition.

    OBJECTIVE: This study aimed to determine the potential of ascorbic acid alone in inducing differentially expressed osteoblast-related proteins in dental stem cells via the liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) approach.

    METHODS: The cells were isolated from deciduous (SHED) and permanent teeth (DPSC) and induced with 10 μg/mL of ascorbic acid. Bone mineralisation and osteoblast gene expression were determined using von Kossa staining and reverse transcriptase-polymerase chain reaction. The label-free protein samples were harvested on days 7 and 21, followed by protein identification and quantification using LC-MS/MS. Based on the similar protein expressed throughout treatment and controls for SHED and DPSC, overall biological processes followed by osteoblast-related protein abundance were determined using the PANTHER database. STRING database was performed to determine differentially expressed proteins as candidates for SHED and DPSC during osteoblast development.

    RESULTS: Both cells indicated brownish mineral stain and expression of osteoblast-related genes on day 21. Overall, a total of 700 proteins were similar among all treatments on days 7 and 21, with 482 proteins appearing in the PANTHER database. Osteoblast-related protein abundance indicated 31 and 14 proteins related to SHED and DPSC, respectively. Further analysis by the STRING database identified only 22 and 11 proteins from the respective group. Differential expressed analysis of similar proteins from these two groups revealed ACTN4 and ACTN1 as proteins involved in both SHED and DPSC. In addition, three (PSMD11/RPN11, PLS3, and CLIC1) and one (SYNCRIP) protein were differentially expressed specifically for SHED and DPSC, respectively.

    CONCLUSION: Proteome differential expression showed that ascorbic acid alone could induce osteoblastrelated proteins in SHED and DPSC and generate specific differentially expressed protein markers.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links