Displaying all 4 publications

Abstract:
Sort:
  1. Arsad AZ, Zuhdi AWM, Abdullah SF, Chau CF, Ghazali A, Ahmad I, et al.
    Molecules, 2023 Mar 20;28(6).
    PMID: 36985752 DOI: 10.3390/molecules28062780
    Zinc sulfide (ZnS) thin films prepared using the chemical bath deposition (CBD) method have demonstrated great viability in various uses, encompassing photonics, field emission devices, field emitters, sensors, electroluminescence devices, optoelectronic devices, and are crucial as buffer layers of solar cells. These semiconducting thin films for industrial and research applications are popular among researchers. CBD appears attractive due to its simplicity, cost-effectiveness, low energy consumption, low-temperature compatibility, and superior uniformity for large-area deposition. However, numerous parameters influence the CBD mechanism and the quality of the thin films. This study offers a comprehensive review of the impact of various parameters that can affect different properties of ZnS films grown on CBD. This paper provides an extensive review of the film growth and structural and optical properties of ZnS thin films influenced by various parameters, which include complexing agents, the concentration ratio of the reactants, stirring speed, humidity, deposition temperature, deposition time, pH value, precursor types, and annealing temperature environments. Various studies screened the key influences on the CBD parameters concerning the quality of the resulting films. This work will motivate researchers to provide additional insight into the preparation of ZnS thin films using CBD to optimize this deposition method to its fullest potential.
  2. Roslan MF, Al-Shetwi AQ, Hannan MA, Ker PJ, Zuhdi AWM
    PLoS One, 2020;15(12):e0243581.
    PMID: 33362200 DOI: 10.1371/journal.pone.0243581
    The lack of control in voltage overshoot, transient response, and steady state error are major issues that are frequently encountered in a grid-connected photovoltaic (PV) system, resulting in poor power quality performance and damages to the overall power system. This paper presents the performance of a control strategy for an inverter in a three-phase grid-connected PV system. The system consists of a PV panel, a boost converter, a DC link, an inverter, and a resistor-inductor (RL) filter and is connected to the utility grid through a voltage source inverter. The main objective of the proposed strategy is to improve the power quality performance of the three-phase grid-connected inverter system by optimising the proportional-integral (PI) controller. Such a strategy aims to reduce the DC link input voltage fluctuation, decrease the harmonics, and stabilise the output current, voltage, frequency, and power flow. The particle swarm optimisation (PSO) technique was implemented to tune the PI controller parameters by minimising the error of the voltage regulator and current controller schemes in the inverter system. The system model and control strategies were implemented using MATLAB/Simulink environment (Version 2020A) Simscape-Power system toolbox. Results show that the proposed strategy outperformed other reported research works with total harmonic distortion (THD) at a grid voltage and current of 0.29% and 2.72%, respectively, and a transient response time of 0.1853s. Compared to conventional systems, the PI controller with PSO-based optimization provides less voltage overshoot by 11.1% while reducing the time to reach equilibrium state by 32.6%. The consideration of additional input parameters and the optimization of input parameters were identified to be the two main factors that contribute to the significant improvements in power quality control. Therefore, the proposed strategy effectively enhances the power quality of the utility grid, and such an enhancement contributes to the efficient and smooth integration of the PV system.
  3. Isah M, Doroody C, Rahman KS, Harif MN, Kiong TS, Zuhdi AWM
    Heliyon, 2023 Nov;9(11):e21536.
    PMID: 38027560 DOI: 10.1016/j.heliyon.2023.e21536
    The study used magnetron sputtering to investigate the growth of cadmium telluride (CdTe) thin films on surface treated n-type silicon (n-Si) substrates. The n-Si substrates were textured using potassium hydroxide (KOH) before the sputter deposition of CdTe. This was followed by cadmium chloride treatment to reduce the strain at the interface of CdTe and Si, which is caused by the incompatible lattice and thermal expansion mismatch (CTE). X-ray diffraction (XRD) analysis showed that the lowest FWHM and dislocation densities were obtained for CdCl2/CdTe/txt-nSi, which aligns with the scanning electron microscopy (SEM) results. In the SEM images, the interface bonding between the CdTe and Si surfaces was visible in the cross-sections, and the top-view images revealed sputtered CdTe thin films conforming to the patterns of pyramidal textured Si as an engineered surface to capture more light to maximize absorption in the CdTe/Si tandem design. The Energy dispersive X-ray (EDX) results showed that all the CdTe deposited on textured n-Si exhibited more Te atoms than Cd atoms, irrespective of the CdCl2 treatment. The presented results suggest that the texturization and CdCl2 treatment improved the morphology and grain boundary passivation of the sputtered CdTe. The adhesiveness of CdTe on the n-Si substrate was also significantly enhanced. Our findings further demonstrate that proper surface treatment of the Si substrate can greatly improve the quality of CdTe grown on Si by reducing the strain that occurs during the growth process. This study demonstrates a valuable method for enhancing the integration of CdTe with Si for two-junction tandem solar cell applications.
  4. Isah M, Doroody C, Rahman KS, Rahman MNA, Goje AA, Soudagar MEM, et al.
    Sci Rep, 2024 Feb 27;14(1):4804.
    PMID: 38413807 DOI: 10.1038/s41598-024-55616-2
    A numerical analysis of a CdTe/Si dual-junction solar cell in terms of defect density introduced at various defect energy levels in the absorber layer is provided. The impact of defect concentration is analyzed against the thickness of the CdTe layer, and variation of the top and bottom cell bandgaps is studied. The results show that CdTe thin film with defects density between 1014 and 1015 cm-3 is acceptable for the top cell of the designed dual-junction solar cell. The variations of the defect concentrations against the thickness of the CdTe layer indicate that the open circuit voltage, short circuit current density, and efficiency (ƞ) are more affected by the defect density at higher CdTe thickness. In contrast, the Fill factor is mainly affected by the defect density, regardless of the thin film's thickness. An acceptable defect density of up to 1015 cm-3 at a CdTe thickness of 300 nm was obtained from this work. The bandgap variation shows optimal results for a CdTe with bandgaps ranging from 1.45 to 1.7 eV in tandem with a Si bandgap of about 1.1 eV. This study highlights the significance of tailoring defect density at different energy levels to realize viable CdTe/Si dual junction tandem solar cells. It also demonstrates how the impact of defect concentration changes with the thickness of the solar cell absorber layer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links