This research has been accomplished using the advanced selective laser melting (SLM) technique as well as HIP post-treatment in order to improve mechanical properties and biocompatibility of Mg- Ca-Sr alloy. Through this research it becomes clearly noticeable that the Mg-1.5Ca-xSr (x = 0.6, 2.1, 2.5) alloys with Sr exhibited better mechanical properties and corrosion potentials. This is more particular with the Mg-1.5Ca-2.5Sr alloy after HIP post-treatment allowing it to provide a desired combination of degradation and mechanical behavior for orthopedic fracture fixation during a desired treatment period. In vivo trials, there was a clear indication and exhibition that this Mg-1.5Ca-2.5Sr alloy screw can completely dissolve in miniature pig's body which leads to an acceleration in growth of bone tissues. Mg-Ca-Sr alloy proved potential candidate for use in orthopedic fixation devices through Our results concluded that Mg-Ca-Sr alloy are potential candidate for use in orthopedic fixation devices through mechanical strength and biocompatibility evaluations (in vitro or In vivo).
Bones are nanocomposites consisting of a collagenous fibre network, embedded with calcium phosphates mainly hydroxyapatite (HA) nanocrystallites. As bones are subjected to continuous loading and unloading process every day, they often tend to become prone to fatigue and breakdown. Therefore, this review addresses the use of nanocomposites particularly polymers reinforced with nanoceramics that can be used as load bearing bone implants. Further, nanocomposite preparation and dispersion modification techniques have been highlighted along with thorough discussion on the influence that various nanofillers have on the physico-mechanical properties of nanocomposites in relation to that of natural bone properties. This review updates the nanocomposites that meet the physico-mechanical properties (strength and elasticity) as well as biocompatibility requirement of a load bearing bone implant and also attempts to highlight the gaps in the reported studies to address the fatigue and creep properties of the nanocomposites.
In-depth analyses of post-corrosion mechanical properties and architecture of open cell iron foams with hollow struts as absorbable bone scaffolds were carried out. Variations in the architectural features of the foams after 14 days of immersion in a Hanks' solution were investigated using micro-computed tomography and scanning electron microscope images. Finite element Kelvin foam model was developed, and the numerical modeling and experimental results were compared against each other. It was observed that the iron foam samples were mostly corroded in the periphery regions. Except for quasi-elastic gradient, other mechanical properties (i.e. compressive strength, yield strength and energy absorbability) decreased monotonically with immersion time. Presence of adherent corrosion products enhanced the load-bearing capacity of the open cell iron foams at small strains. The finite element prediction for the quasi-elastic response of the 14-day corroded foam was in an agreement with the experimental results. This study highlights the importance of considering corrosion mechanism when designing absorbable scaffolds; this is indispensable to offer desirable mechanical properties in porous materials during degradation in a biological environment.
Poly(glycolide-co-caprolactone) (PGCL) has become a novice to the bioresorbable suture owing to the synergistic properties taken from the homo-polyglycolide (PGA) and polycaprolactone (PCL) such as excellent bioresorption and flexibility. In addition to under conventional monotonic loading, the understanding of mechanical responses of PGCL copolymers under complex loading conditions such as cyclic and stress relaxation is crucial for its application as a surgical suture. Consequently, the present work focuses on evaluating the mechanical responses of PGCL sutures under monotonic, cyclic, and stress relaxation loading conditions. Under monotonic loading, the stress-strain behavior of the PGCL suture was found to be non-linear with noticeable strain-rate dependence. Under cyclic loading, inelastic responses including stress-softening, hysteresis and permanent set were observed. During cyclic loading, both stress-softening and hysteresis were found to increase with the maximum strain. In multi-step stress relaxation, the PGCL sutures were observed to exhibit a strong viscoelastic response. In an attempt to describe the relationship between the stress-relaxation and strain-induced crystallization (SIC) occurring during the loading and relaxation processes, a schematic illustration of the conformational change of polymer chains in PGCL sutures was proposed in this work. Results showed that SIC was dependent on the strain level as well as the loading and relaxation durations. The inelastic phenomena observed in PGCL sutures can be thus correlated to the combined effect of stress relaxation and SIC.
The study was carried out with the aim to evaluate natural coral (Porites spp.) implanted in sheep femur microscopically. Twelve adult, male sheep were used in this study. The defect area was implanted with coral and monitored for up to 12 weeks. The sheep were euthanased at 2,4,8, and 12 weeks post-implantation. Microscopically, natural coral implanted into bone tissue have shown gradual resorption and progressively replaced by new bone. At 12 weeks post-implantation, the implanted site was almost completely surrounded by mature bone. The results showed that natural coral was found to be a biodegradable and osteo-conductive biomaterial, which acted as a scaffold for a direct osteoblastic apposition.
Among the various biomaterials available for tissue engineering and therapeutic applications, microbial polyhydroxyalkanoates (PHAs) offer the most diverse range of thermal and mechanical properties. Of particular interest are the PHAs that contain 4-hydroxybutyrate such as poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB) and poly(4-hydroxybutyrate) [P(4HB)]. These polyesters can only be synthesized by a few types of bacteria, among which Comamonas acidovorans has the most efficient metabolic pathways to channel 4HB monomers. The resulting polyesters are bioabsorbable and are being developed as a new biomaterial for medical applications. By controlling the molar ratio of the monomers, it is possible to produce materials that are as tough and elastic as rubber.
This study compares the midterm results of mitral valve repair using the biodegradable ring versus repair with non-ring annuloplasty techniques for congenital mitral valve disease in young children where it was not possible to use standard commercial rings.
Biodegradable stents are considered to be a recent innovation, and their feasibility and applicability have been proven in recent years. Research in this area has focused on materials development and biological studies, rather than on how to transform the developed biodegradable materials into the stent itself. Currently available stent technology, the laser cutting-based process, might be adapted to fabricate biodegradable stents. In this work, the fabrication, characterization and testing of biodegradable Fe-Mn stents are described. A standard process for fabricating and testing stainless steel 316L stents was referred to. The influence of process parameters on the physical, metallurgical and mechanical properties of the stents, and the quality of the produced stents, were investigated. It was found that some steps of the standard process such as laser cutting can be directly applied, but changes to parameters are needed for annealing, and alternatives are needed to replace electropolishing.
The study was carried out to evaluate macroscopically the ability of coral to repair a large size bone defect. A total 12 adult, male sheep were used in the study. The large bone defect (2.5cm x 0.5cm x 0.5cm) was created surgically on the left proximal femur and replaced by a block of coral (Porites sp.). Radiographs were obtained immediately after surgery and at 2, 4, 8 and 12 weeks post-implantation. Ultrasonographic examinations were carried out every 2 weeks after implantation up to 12 weeks using ultrasound machine (TOSHIBA Capasee II) connected with 7MHz frequency transducer. The sheep were euthanased at 2, 4, 8, and 12 weeks post-implantation and the bone examined grossly. Both ultrasonographs and radiographs taken at 8 and 12 weeks showed that the implants had been resorbed and left the space that much reduced in size. There was no sign of implant rejection observed in all animals. The results showed that processed coral has potential to become bone substitute for reconstructive bone surgery.
This in vivo study revealed that porous hydroxyapatite (PHA) and dense hydroxyapatite (DHA) are good implant materials that can accelerate bone healing and resorbed in acceptable time. But there were differences in the mechanism of the resorption of DHA and PHA due to variability in the physical properties and osteogenicity.
The main objective of the study was to determine the biodegradability, resorption and osteoconductivity potency of coral implant. Coral blocks (CORAGRAF) were prepared from sea coral Porites species. The blocks were implanted in the right mandible of rabbit model. Implants were harvested at 2 and 4 weeks intervals and subjected for light and scanning electron microscopy. Dense hydroxyapatite (DHA) was implanted in the left mandible as a control. The results of this study demonstrated that CORAGRAF is a good implant material that can accelerates bone healing and be resorbed in an acceptable time. The mechanisms of the resorption seemed to be the same (crumbling process), a first step where the edge of the coral become powdery then a second step which could be phagocytosis and dissolution in extracellular fluid.
This article reports the in vitro degradation and cytotoxicity assessment of Zn-3Mg alloy developed for biodegradable bone implants. The alloy was prepared using casting, and its microstructure was composed of Mg2Zn11 intermetallic phase distributed within a Zn-rich matrix. The degradation assessment was done using potentiodynamic polarization and electrochemical impedance spectrometry. The cell viability and the function of normal human osteoblast cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and alkaline phosphatase extracellular enzyme activity assays. The results showed that the degradation rate of the alloy was slower than those of pure Zn and pure Mg due to the formation of a high polarization resistance oxide film. The alloy was cytocompatible with the normal human osteoblast cells at low concentrations (<0.5 mg/mL), and its alkaline phosphatase activity was superior to pure Mg. This assessment suggests that Zn-3Mg alloy has the potential to be developed as a material for biodegradable bone implants, but the toxicity limit must be carefully observed.
This article reports a degradation study that was done on stent prototypes made of biodegradable Fe35Mn alloy in a simulated human coronary arterial condition. The stent degradation was observed for a short-term period from 0.5 to 168 h, which simulates the early period of stenting procedure. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to quantify degradation rate and surface property of the stents. Results showed that signs of degradation were visible on both crimped and expanded stents after 1 h of test, mostly located on the stent's curvatures. The degradation rate of stent was higher compared to that of the original alloy, indicating the surface altering effect of stent fabrication processing to degradation. A single oxide layer was formed and detected as a porous structure with capacitive behavior. Expanded stents exhibited lower polarization resistance compared to the nonexpanded ones, indicating the cold work effect of expansion procedure to degradation.