Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Suppian R, Vegandraj S, Kandaiya S
    Int J Rad Appl Instrum A, 1992 Jul;43(7):937-8.
    PMID: 1321104
    Pumping air through a soft tissue which acts as a membrane is a relatively easy and quick method to collect and measure radon/thoron and its daughter nuclides in air. Analysis of the activity of the radionuclides can be calculated using an alpha counter which has been calibrated. In this method the activity of radon/thoron cannot be separated from the activity of radionuclides already present in the aerosol or dust particles.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  2. Sakai N, Yamamoto S, Matsui Y, Khan MF, Latif MT, Ali Mohd M, et al.
    Sci Total Environ, 2017 May 15;586:1279-1286.
    PMID: 28236484 DOI: 10.1016/j.scitotenv.2017.02.139
    Volatile Organic Compounds (VOCs) in indoor air were investigated at 39 private residences in Selangor State, Malaysia to characterize the indoor air quality and to identify pollution sources. Twenty-two VOCs including isomers (14 aldehydes, 5 aromatic hydrocarbons, acetone, trichloroethylene and tetrachloroethylene) were collected by 2 passive samplers for 24h and quantitated using high performance liquid chromatography and gas chromatography mass spectrometry. Source profiling based on benzene/toluene ratio as well as statistical analysis (cluster analysis, bivariate correlation analysis and principal component analysis) was performed to identify pollution sources of the detected VOCs. The VOCs concentrations were compared with regulatory limits of air quality guidelines in WHO/EU, the US, Canada and Japan to clarify the potential health risks to the residents. The 39 residences were classified into 2 groups and 2 ungrouped residences based on the dendrogram in the cluster analysis. Group 1 (n=30) had mainly toluene (6.87±2.19μg/m3), formaldehyde (16.0±10.1μg/m3), acetaldehyde (5.35±4.57μg/m3) and acetone (11.1±5.95μg/m3) at background levels. Group 2 (n=7) had significantly high values of formaldehyde (99.3±10.7μg/m3) and acetone (35.8±12.6μg/m3), and a tendency to have higher values of acetaldehyde (23.7±13.5μg/m3), butyraldehyde (3.35±0.41μg/m3) and isovaleraldehyde (2.30±0.39μg/m3). The 2 ungrouped residences showed particularly high concentrations of BTX (benzene, toluene and xylene: 235μg/m3 in total) or acetone (133μg/m3). The geometric mean value of formaldehyde (19.2μg/m3) exceeded an 8-hour regulatory limit in Canada (9μg/m3), while those in other compounds did not exceed any regulatory limits, although a few residences exceeded at least one regulatory limit of benzene or acetaldehyde. Thus, the VOCs in the private residences were effectively characterized from the limited number of monitoring, and the potential health risks of the VOCs exposure, particularly formaldehyde, should be considered in the study area.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  3. Mohamad N, Latif MT, Khan MF
    Ecotoxicol Environ Saf, 2016 Feb;124:351-362.
    PMID: 26590697 DOI: 10.1016/j.ecoenv.2015.11.002
    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  4. Awang N, Jamaluddin F
    J Environ Public Health, 2014;2014:408275.
    PMID: 25136371 DOI: 10.1155/2014/408275
    This study was carried out to determine the concentration of lead (Pb), anions, and cations at six primary schools located around Kuala Lumpur. Low volume sampler (MiniVol PM10) was used to collect the suspended particulates in indoor and outdoor air. Results showed that the concentration of Pb in indoor air was in the range of 5.18 ± 1.08 μg/g-7.01 ± 0.08 μg/g. All the concentrations of Pb in indoor air were higher than in outdoor air at all sampling stations. The concentrations of cations and anions were higher in outdoor air than in indoor air. The concentration of Ca(2+) (39.51 ± 5.01 mg/g-65.13 ± 9.42 mg/g) was the highest because the cation existed naturally in soil dusts, while the concentrations of NO3 (-) and SO4 (2-) were higher in outdoor air because there were more sources of exposure for anions in outdoor air, such as highly congested traffic and motor vehicles emissions. In comparison, the concentration of NO3 (-) (29.72 ± 0.31 μg/g-32.00 ± 0.75 μg/g) was slightly higher than SO4 (2-). The concentrations of most of the parameters in this study, such as Mg(2+), Ca(2+), NO3 (-), SO4 (2-), and Pb(2+), were higher in outdoor air than in indoor air at all sampling stations.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  5. Lee J, Lim S, Lee K, Guo X, Kamath R, Yamato H, et al.
    Int J Hyg Environ Health, 2010 Sep;213(5):348-51.
    PMID: 20542729 DOI: 10.1016/j.ijheh.2010.05.007
    Exposure to secondhand smoke (SHS) is a major threat to public health. Asian countries having the highest smoking prevalence are seriously affected by SHS. The objective of the study was to measure SHS levels in hospitality venues in seven Asian countries and to compare the SHS exposure to the levels in Western countries. The study was carried out in four types of related hospitality venues (restaurant, café, bar/club and entertainment) in China, India, Japan, Korea, Malaysia, Pakistan and Sri Lanka. Real-time measurement of particulate matter of <2.5microm aerodynamic diameter (PM(2.5)) was made during business hour using a handheld laser operated monitor. A total of 168 venues were measured in seven countries. The average indoor PM(2.5) level was 137microg/m(3), ranging from 46microg/m(3) in Malaysia to 207microg/m(3) in India. Bar/club had the highest PM(2.5) level of 191microg/m(3) and restaurants had the lowest PM(2.5) level of 92microg/m(3). The average indoor PM(2.5) level in smoking venues was 156micro/m(3), which was 3.6 times higher than non-smoking venues (43microg/m(3)). Indoor PM(2.5) levels were significantly associated with country, type of venue, smoking density and air exchange rate (p<0.05). In the seven Asian countries, PM(2.5) levels were high due to SHS in public places. The current levels are comparable to the levels in Western countries before the adoption of smoke-free policy. Since Asian country has high prevalence of SHS in public places, there is an urgent need for comprehensive smoke-free regulation in Asian countries.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  6. Edimansyah BA, Rusli BN, Naing L, Azwan BA, Aziah BD
    PMID: 19323052
    The purpose of this study was to determine the indoor air quality (IAQ) status of an automotive assembly plant in Rawang, Selangor, Malaysia using selected IAQ parameters, such as carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity (RH) and respirable particulate matter (PM10). A cross-sectional study was conducted in the paint shop and body shop sections of the plant in March 2005. The Q-TRAK Plus IAQ Monitor was used to record the patterns of CO, CO2, RH and temperature; whilst PM10 was measured using DUSTTRAK Aerosol Monitor over an 8-hour time weight average (8-TWA). It was found that the average temperatures, RH and PM10 in the paint shop section and body shop sections exceeded the Department of Safety and Health (DOSH) standards. The average concentrations of RH and CO were slightly higher in the body shop section than in the paint shop section, while the average concentrations of temperature and CO2 were slightly higher in the paint shop section than in the body shop section. There was no difference in the average concentrations of PM10 between the two sections.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  7. Ismail B, Redzuwan Y, Chua RS, Shafiee W
    Appl Radiat Isot, 2001 Mar;54(3):393-7.
    PMID: 11214872
    The processing of amang (one of a number of tin-tailing products) for its valuable minerals has associated with the radiological and environmental problems. The processing and stockpiling of amang and ilmenite in open-air spaces, subject as it is to environmental influences, gives rise to a potential for affecting residents in adjacent area. A case study was carried out in a residential area neighbouring a typical amang plant to investigate the radiological impact to the residents. The average Effective Dose rates, calculated based on the contributions of Effective Dose rates from inhaled suspended radioactive dust, radon-thoron and their progeny, and external gamma radiation, were determined for selected houses. Results show that the occupants of those houses received Effective Dose rate, which cannot be differentiated from background. The major contributor to the average Effective Dose rate came from external radiation sources. Inhaled radon and its progeny was the second major contributor.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  8. Othman M, Latif MT, Matsumi Y
    Ecotoxicol Environ Saf, 2019 Apr 15;170:739-749.
    PMID: 30583285 DOI: 10.1016/j.ecoenv.2018.12.042
    It is important to assess indoor air quality in school classrooms where the air quality may significantly influence school children's health and performance. This study aims to determine the concentrations of PM2.5 and dust chemical compositions in indoor and outdoor school classroom located in Kuala Lumpur City Centre. The PM2.5 concentration was measured from 19th September 2017-16th February 2018 using an optical PM2.5 sensor. Indoor and outdoor dust was also collected from the school classrooms and ion and trace metal concentrations were analysed using ion chromatography (IC) and inductively couple plasma-mass spectrometry (ICP-MS) respectively. This study showed that the average indoor and outdoor 24 h PM2.5 was 11.2 ± 0.45 µg m-3 and 11.4 ± 0.44 µg m-3 respectively. The 8 h PM2.5 concentration ranged between 3.2 and 28 µg m-3 for indoor and 3.2 and 19 µg m-3 for outdoor classrooms. The highest ion concentration in indoor dust was Ca2+ with an average concentration of 38.5 ± 35.0 µg g-1 while for outdoor dust SO42- recorded the highest ion concentration with an average concentration of 30.6 ± 9.37 µg g-1. Dominant trace metals in both indoor and outdoor dust were Al, Fe and Zn. Principle component analysis-multiple linear regression (PCA-MLR) demonstrated that the major source of indoor dust was road dust (69%), while soil dominated the outdoor dust (74%). Health risk assessment showed that the hazard quotient (HQ) value for non-carcinogenic trace metals was indoor and outdoor dust through dermal and inhalation pathways, but not the ingestion pathway. This study suggests indoor contributions of PM2.5 concentrations are due to the activities of the school children while the compositions of indoor and outdoor dust are greatly influenced by the soil/earth source plus industrial and traffic contribution.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  9. Arku RE, Brauer M, Ahmed SH, AlHabib KF, Avezum Á, Bo J, et al.
    Environ Pollut, 2020 Jul;262:114197.
    PMID: 32146361 DOI: 10.1016/j.envpol.2020.114197
    Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM2.5 and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM2.5 exposures were estimated at year of enrollment for 137,809 adults aged 35-70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM2.5 exposure ranged from 3 to 97 μg/m3 across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m3 increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM2.5 > 62 μg/m3) compared to the first (PM2.5 
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  10. Isa KNM, Jalaludin J, Elias SM, Than LTL, Jabbar MA, Saudi ASM, et al.
    Ecotoxicol Environ Saf, 2021 Sep 15;221:112430.
    PMID: 34147866 DOI: 10.1016/j.ecoenv.2021.112430
    The exposure of school children to indoor air pollutants has increased allergy and respiratory diseases. The objective of this study were to determine the toxicodynamic interaction of indoor pollutants exposure, biological and chemical with expression of adhesion molecules on eosinophil and neutrophil. A self-administered questionnaire, allergy skin test, and fractional exhaled nitric oxide (FeNO) analyser were used to collect information on health status, sensitization to allergens and respiratory inflammation, respectively among school children at age of 14 years. The sputum induced were analysed to determine the expression of CD11b, CD35, CD63 and CD66b on eosinophil and neutrophil by using flow cytometry technique. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde, temperature, and relative humidity were measured inside the classrooms. The fungal DNA were extracted from settled dust collected from classrooms and evaluated using metagenomic techniques. We applied chemometric and regression in statistical analysis. A total of 1869 unique of operational taxonomic units (OTUs) of fungi were identified with dominated at genus level by Aspergillus (15.8%), Verrucoconiothyrium (5.5%), and Ganoderma (4.6%). Chemometric and regression results revealed that relative abundance of T. asahii were associated with down regulation of CD66b expressed on eosinophil, and elevation of FeNO levels in predicting asthmatic children with model accuracy of 63.6%. Meanwhile, upregulation of CD11b expressed on eosinophil were associated with relative abundance of A. clavatus and regulated by PM2.5. There were significant association of P. bandonii with upregulation of CD63 expressed on neutrophil and exposure to NO2. Our findings indicate that exposure to PM2.5, NO2, T. asahii, P.bandonii and A.clavatus are likely interrelated with upregulation of activation and degranulation markers on both eosinophil and neutrophil.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  11. Ooi SS, Mak JW, Chen DK, Ambu S
    Ind Health, 2017 Feb 07;55(1):35-45.
    PMID: 27476379 DOI: 10.2486/indhealth.2015-0218
    The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants' complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants' sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  12. Norbäck D, Hashim JH, Hashim Z, Cai GH, Sooria V, Ismail SA, et al.
    Sci Total Environ, 2017 Jan 15;577:148-154.
    PMID: 27802882 DOI: 10.1016/j.scitotenv.2016.10.148
    Few health studies exist on dampness and mould in schools in the tropics. We studied associations between fraction of exhaled nitric oxide (FeNO), respiratory symptoms and airway infections among students and dampness and fungal DNA in schools in Malaysia. A total of 368 randomly selected students from 32 classrooms in 8 secondary schools in Penang, Malaysia, participated (58% participation rate). Information on current respiratory symptoms and the home environment was collected by a standardised questionnaire. FeNO was measured by NIOX MINO (50ml/min). The classrooms were inspected and dust was collected by vacuuming on special filters and was analysed for five fungal DNA sequences by quantitative PCR. Linear mixed models and 3-level multiple logistic regression (school, classroom, student) were applied adjusting for demographic data and the home environment. Totally 10.3% reported doctor's diagnosed asthma, 15.1% current wheeze, 12.4% current asthma, 37.3% daytime breathlessness, 10.2% nocturnal breathlessness, 38.9% airway infections and 15.5% had pollen or furry pet allergy. The geometric mean of FeNO was 19.9ppb and 45% had elevated FeNO (>20ppb). Boys had higher levels of FeNO. Chinese had less daytime breathlessness than Malay (OR=0.30: p<0.001). Indoor carbon dioxide levels were low (380-720ppm). Dampness was observed in 18% of the classrooms and was associated with respiratory infections (OR=3.70; 95% CI 1.14-12.1) and FeNO (p=0.04). Aspergillus versicolor DNA was detected in 67% of the classrooms. Higher numbers of Aspergillus versicolor DNA in classroom dust were associated with wheeze (p=0.006), current asthma (p=0.002), respiratory infections (p=0.005) and elevated FeNO levels (p=0.02). In conclusion, respiratory symptoms were common among the students and the high FeNO levels indicate ongoing airway inflammation. Building dampness and the mould Aspergillus versicolor in schools in Malaysia can be risk factors for impaired respiratory health among the students.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  13. Khamal R, Isa ZM, Sutan R, Noraini NMR, Ghazi HF
    Ann Glob Health, 2019 01 22;85(1).
    PMID: 30741516 DOI: 10.5334/aogh.2425
    INTRODUCTION: Indoor air quality in day care centers (DCCs) is an emerging research topic nowadays. Indoor air pollutants such as particulate matter (PM) and microbes have been linked to respiratory health effects in children, particularly asthma-related symptoms such as night coughs and wheezing due to early exposure to indoor air contaminants.

    OBJECTIVE: The aim of this study was to determine the association between wheezing symptoms among toddlers attending DCCs and indoor particulate matter, PM10, PM2.5, and microbial count level in urban DCCs in the District of Seremban, Malaysia.

    METHODS: Data collection was carried out at 10 DCCs located in the urban area of Seremban. Modified validated questionnaires were distributed to parents to obtain their children's health symptoms. The parameters measured were indoor PM2.5, PM10, carbon monoxide, total bacteria count, total fungus count, temperature, air velocity, and relative humidity using the National Institute for Occupational Safety and Health analytical method.

    RESULTS: All 10 DCCs investigated had at least one indoor air quality parameter exceeding the acceptable level of standard guidelines. The prevalence of toddlers having wheezing symptoms was 18.9%. There was a significant different in mean concentration of PM2.5 and total bacteria count between those with and those without wheezing symptoms (P = 0.02, P = 0.006).

    CONCLUSIONS: Urban DCCs are exposed to many air pollutants that may enter their buildings from various adjacent sources. The particle concentrations and presence of microbes in DCCs might increase the risk of exposed children for respiratory diseases, particularly asthma, in their later life.

    Matched MeSH terms: Air Pollution, Indoor/analysis
  14. Othman M, Latif MT, Yee CZ, Norshariffudin LK, Azhari A, Halim NDA, et al.
    Ecotoxicol Environ Saf, 2020 May;194:110432.
    PMID: 32169727 DOI: 10.1016/j.ecoenv.2020.110432
    It is important to have good indoor air quality, especially in indoor office environments, in order to enhance productivity and maintain good work performance. This study investigated the effects of indoor office activities on particulate matter of less than 2.5 μm (PM2.5) and ozone (O3) concentrations, assessing their potential impact on human health. Measurements of indoor PM2.5 and O3 concentrations were taken every 24 h during the working days in five office environments located in a semi-urban area. As a comparison, the outdoor concentrations were derived from the nearest Continuous Air Quality Monitoring Station. The results showed that the average 24 h of indoor and outdoor PM2.5 concentrations were 3.24 ± 0.82 μg m-3 and 17.4 ± 3.58 μg m-3 respectively, while for O3 they were 4.75 ± 4.52 ppb and 21.5 ± 5.22 ppb respectively. During working hours, the range of PM2.5 concentrations were 1.00 μg m-3 to 6.10 μg m-3 while for O3 they were 0.10 ppb to 38.0 ppb. The indoor to outdoor ratio (I/O) for PM2.5 and O3 was <1, thus indicating a low infiltration of outdoor sources. The value of the hazard quotient (HQ) for all sampling buildings was <1 for both chronic and acute exposures, indicating that the non-carcinogenic risks are negligible. Higher total cancer risk (CR) value for outdoors (2.67E-03) was observed compared to indoors (4.95E-04) under chronic exposure while the CR value for acute exposure exceeded 1.0E-04, thus suggesting a carcinogenic PM2.5 risk for both the indoor and outdoor environments. The results of this study suggest that office activities, such as printing and photocopying, affect indoor O3 concentrations while PM2.5 concentrations are impacted by indoor-related contributions.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  15. Othman M, Latif MT, Mohamed AF
    Ecotoxicol Environ Saf, 2018 Feb;148:293-302.
    PMID: 29080527 DOI: 10.1016/j.ecoenv.2017.10.034
    This study intends to determine the health impacts from two office life cycles (St.1 and St.2) using life cycle assessment (LCA) and health risk assessment of indoor metals in coarse particulates (particulate matter with diameters of less than 10µm). The first building (St.1) is located in the city centre and the second building (St.2) is located within a new development 7km away from the city centre. All life cycle stages are considered and was analysed using SimaPro software. The trace metal concentrations were determined by inductively couple plasma-mass spectrometry (ICP-MS). Particle deposition in the human lung was estimated using the multiple-path particle dosimetry model (MPPD). The results showed that the total human health impact for St.1 (0.027 DALY m-2) was higher than St.2 (0.005 DALY m-2) for a 50-year lifespan, with the highest contribution from the operational phase. The potential health risk to indoor workers was quantified as a hazard quotient (HQ) for non-carcinogenic elements, where the total values for ingestion contact were 4.38E-08 (St.1) and 2.59E-08 (St.2) while for dermal contact the values were 5.12E-09 (St.1) and 2.58E-09 (St.2). For the carcinogenic risk, the values for dermal and ingestion routes for both St.1 and St.2 were lower than the acceptable limit which indicated no carcinogenic risk. Particle deposition for coarse particles in indoor workers was concentrated in the head, followed by the pulmonary region and tracheobronchial tract deposition. The results from this study showed that human health can be significantly affected by all the processes in office building life cycle, thus the minimisation of energy consumption and pollutant exposures are crucially required.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  16. Liu W, Zhang J, Hashim JH, Jalaludin J, Hashim Z, Goldstein BD
    Environ Health Perspect, 2003 Sep;111(12):1454-60.
    PMID: 12948883
    Burning mosquito coils indoors generates smoke that can control mosquitoes effectively. This practice is currently used in numerous households in Asia, Africa, and South America. However, the smoke may contain pollutants of health concern. We conducted the present study to characterize the emissions from four common brands of mosquito coils from China and two common brands from Malaysia. We used mass balance equations to determine emission rates of fine particles (particulate matter < 2.5 microm in diameter; PM(2.5)), polycyclic aromatic hydrocarbons (PAHs), aldehydes, and ketones. Having applied these measured emission rates to predict indoor concentrations under realistic room conditions, we found that pollutant concentrations resulting from burning mosquito coils could substantially exceed health-based air quality standards or guidelines. Under the same combustion conditions, the tested Malaysian mosquito coils generated more measured pollutants than did the tested Chinese mosquito coils. We also identified a large suite of volatile organic compounds, including carcinogens and suspected carcinogens, in the coil smoke. In a set of experiments conducted in a room, we examined the size distribution of particulate matter contained in the coil smoke and found that the particles were ultrafine and fine. The findings from the present study suggest that exposure to the smoke of mosquito coils similar to the tested ones can pose significant acute and chronic health risks. For example, burning one mosquito coil would release the same amount of PM(2.5) mass as burning 75-137 cigarettes. The emission of formaldehyde from burning one coil can be as high as that released from burning 51 cigarettes.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  17. Norbäck D, Markowicz P, Cai GH, Hashim Z, Ali F, Zheng YW, et al.
    PLoS One, 2014;9(2):e88303.
    PMID: 24523884 DOI: 10.1371/journal.pone.0088303
    There are few studies on associations between respiratory health and allergens, fungal and bacterial compounds in schools in tropical countries. The aim was to study associations between respiratory symptoms in pupils and ethnicity, chemical microbial markers, allergens and fungal DNA in settled dust in schools in Malaysia. Totally 462 pupils (96%) from 8 randomly selected secondary schools in Johor Bahru, Malaysia, participated. Dust was vacuumed from 32 classrooms and analysed for levels of different types of endotoxin as 3-hydroxy fatty acids (3-OH), muramic acid, ergosterol, allergens and five fungal DNA sequences. Multiple logistic regression was applied. Totally 13.1% pupils reported doctor's diagnosed asthma, 10.3% wheeze and 21.1% pollen or pet allergy. Indian and Chinese children had less atopy and asthma than Malay. Carbon dioxide levels were low (380-690 ppm). No cat (Fel d1), dog (Can f 1) or horse allergens (Ecu cx) were detected. The levels of Bloomia tropicalis (Blo t), house dust mite allergens (Der p 1, Der f 1, Der m 1) and cockroach allergens (Per a 1 and Bla g 1) were low. There were positive associations between levels of Aspergillus versicolor DNA and daytime breathlessness, between C14 3-OH and respiratory infections and between ergosterol and doctors diagnosed asthma. There were negative (protective) associations between levels of C10 3-OH and wheeze, between C16 3-OH and day time and night time breathlessness, between cockroach allergens and doctors diagnosed asthma. Moreover there were negative associations between amount of fine dust, total endotoxin (LPS) and respiratory infections. In conclusion, endotoxin at school seems to be mainly protective for respiratory illness but different types of endotoxin could have different effects. Fungal contamination measured as ergosterol and Aspergillus versicolor DNA can be risk factors for respiratory illness. The ethnical differences for atopy and asthma deserve further attention.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  18. Abidin EZ, Hashim Z, Semple S
    Asian Pac J Cancer Prev, 2013;14(11):6845-50.
    PMID: 24377615
    BACKGROUND: This study was performed to gather data on second-hand smoke (SHS) concentrations in a range of public venues following the implementation of partial Smoke-Free Legislation in Malaysia in 2004.

    MATERIALS AND METHODS: PM2.5 was measured as a marker of SHS levels in a total of 61 restaurants, entertainment centres, internet cafes and pubs in Kuala Lumpur, Malaysia.

    RESULTS: Under the current smoke-free laws smoking was prohibited in 42 of the 61 premises. Active smoking was observed in nearly one-third (n=12) of these. For premises where smoking was prohibited and no active smoking observed, the mean (standard deviation) indoor PM2.5 concentration was 33.4 (23.8) μg/m3 compared to 187.1 (135.1) μg/m3 in premises where smoking was observed The highest mean PM2.5 was observed in pubs [361.5 (199.3) μg/m3].

    CONCLUSIONS: This study provides evidence of high levels of SHS across a range of hospitality venues, including about one-third of those where smoking is prohibited, despite 8 years of smoke-free legislation. Compliance with the legislation appeared to be particularly poor in entertainment centres and internet cafes. Workers and non-smoking patrons continue to be exposed to high concentrations of SHS within the hospitality industry in Malaysia and there is an urgent need for increased enforcement of existing legislation and consideration of more comprehensive laws to protect health.

    Matched MeSH terms: Air Pollution, Indoor/analysis*
  19. Lim FL, Hashim Z, Md Said S, Than LT, Hashim JH, Norbäck D
    Sci Total Environ, 2015 Dec 1;536:353-61.
    PMID: 26225741 DOI: 10.1016/j.scitotenv.2015.06.137
    There are few studies on sick building syndrome (SBS) including clinical measurements for atopy and fractional exhaled nitric oxide (FeNO). Our aim was to study associations between SBS symptoms, selected personal factors, office characteristics and indoor office exposures among office workers from a university in Malaysia. Health data were collected by a questionnaire (n=695), skin prick test (SPT) (n=463) and FeNO test (n=460). Office settled dust was vacuumed and analyzed for endotoxin, (1,3)-β-glucan and house dust mites (HDM) allergens group 1 namely Dermatophagoides pteronyssinus (Der p 1) and Dermatophagoides farinae (Der f 1). Office indoor temperature, relative air humidity (RH), carbon monoxide (CO) and carbon dioxide (CO2) were measured by a direct reading instrument. Associations were studied by two-levels multiple logistic regression with mutual adjustment and stratified analysis. The prevalence of weekly dermal, mucosal and general symptoms was 11.9%, 16.0% and 23.0% respectively. A combination of SPT positivity (allergy to HDM or cat) and high FeNO level (≥25 ppb) was associated with dermal (p=0.002), mucosal (p<0.001) and general symptoms (p=0.05). Der f1 level in dust was associated with dermal (p<0.001), mucosal (p<0.001) and general (p=0.02) symptoms. Among those with allergy to D. farinae, associations were found between Der f 1 levels in dust and dermal (p=0.003), mucosal (p=0.001) and general symptoms (p=0.007). Office-related symptoms were associated with Der f 1 levels in dust (p=0.02), low relative air humidity (p=0.04) and high office temperature (p=0.05). In conclusion, a combination of allergy to cat or HDM and high FeNO is a risk factor for SBS symptoms. Der f 1 allergen in dust can be a risk factor for SBS in the office environment, particularly among those sensitized to Der f 1 allergen.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  20. Lim FL, Hashim Z, Than LTL, Md Said S, Hashim JH, Norbäck D
    Int J Tuberc Lung Dis, 2019 11 01;23(11):1171-1177.
    PMID: 31718753 DOI: 10.5588/ijtld.18.0668
    OBJECTIVE: To examine the associations between endotoxin and (1,3)-β-glucan concentrations in office dust and respiratory symptoms and airway inflammation among 695 office workers in Malaysia.METHODS: Health data were collected using a questionnaire, sensitisation testing and measurement of fractional exhaled nitric oxide (FeNO). Indoor temperature, relative air humidity (RH) and carbon dioxide (CO₂) were measured in the offices and settled dust was vacuumed and analysed for endotoxin and (1,3)-β-glucan concentrations. Associations were analysed by two level multiple logistic regression.RESULTS: Overall, 9.6% of the workers had doctor-diagnosed asthma, 15.5% had wheeze, 18.4% had daytime attacks of breathlessness and 25.8% had elevated FeNO (≥25 ppb). The median levels in office dust were 11.3 EU/mg endotoxin and 62.9 ng/g (1,3)-β-glucan. After adjusting for personal and home environment factors, endotoxin concentration in dust was associated with wheeze (P = 0.02) and rhinoconjunctivitis (P = 0.007). The amount of surface dust (P = 0.04) and (1,3)-β-glucan concentration dust (P = 0.03) were associated with elevated FeNO.CONCLUSION: Endotoxin in office dust could be a risk factor for wheeze and rhinoconjunctivitis among office workers in mechanically ventilated offices in a tropical country. The amount of dust and (1,3)-β-glucan (a marker of indoor mould exposure) were associated with Th2 driven airway inflammation.
    Matched MeSH terms: Air Pollution, Indoor/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links