Displaying all 10 publications

Abstract:
Sort:
  1. Foo A, Carter R, Lambros C, Graves P, Quakyi I, Targett GA, et al.
    Am J Trop Med Hyg, 1991 Jun;44(6):623-31.
    PMID: 1713424
    Monoclonal antibodies (MAbs) directed against different epitope regions on three sexual stage-specific gamete surface proteins of Plasmodium falciparum, Pfs 25, Pfs 230, and Pfs 48/45, were used to study the genetic diversity of these epitopes among fresh isolates of P. falciparum from Malaysia, using immunofluorescence microscopy (IFA). Among 45 Malaysian isolates, one epitope of Pfs 25, designated region I, showed evidence of variable reactivity with MAbs among different isolates; the Pfs 25 epitope, region II, was universally recognized by MAbs in all isolates. Two apparently distinct epitope regions of Pfs 230 were defined by MAbs, one of which was universally recognized by MAbs among the 45 isolates; the other was conserved in all but three isolates. The epitope regions of gamete-surface protein Pfs 48/45, designated regions I, IIa, IIb, IIc, III, and IV, were examined for reactivity by IFA in 33 isolates. Epitope regions I, IIb, III, and IV were conserved in all isolates; regions IIa and IIc existed in variant forms.
    Matched MeSH terms: Antigenic Variation*
  2. Haque E, Banik U, Monwar T, Anthony L, Adhikary AK
    PLoS One, 2018;13(3):e0194516.
    PMID: 29590206 DOI: 10.1371/journal.pone.0194516
    Human adenovirus type 3 (HAdV-3) respiratory infections occurs worldwide in both children and adults, leading to severe morbidity and mortality, particularly in the paediatric age group and especially in neonates. During HAdV infection, neutralizing antibodies are formed against the epitopes located in the hyper variable regions (HVRs) of the hexon protein. These neutralizing antibodies provide protection against reinfection by viruses of the same type. Therefore it is reasonable to speculate that variations of HAdV-3 in the HVRs could impair the immunity acquired by previous infection with a different strain with variation in its HVRs. HAdV-3 has recently become the major agent of acute respiratory infection worldwide, being responsible for 15% to 87% of all adenoviral respiratory infections. However, despite the increased prevalence of HAdV-3 as respiratory pathogen, the diversity of hexon proteins in circulating strains remains unexplored. This study was designed to explore the variation in HVRs of hexon among globally distributed strains of HAdV-3 as well as to discover possible relationship among them, thus possibly shedding light on the cause for the increased prevalence of HAdV-3. In this study, for the first time we analysed the hexon proteins of all 248 available strains of HAdV-3 from the NCBI database and compared them with those of the HAdV-3 prototype (GB stain). We found that the HVRs of HAdV-3 strains circulating worldwide were highly heterogeneous and have been mutating continuously since -their original isolation. Based on their immense heterogeneity, the strains can be categorized into 25 hexon variants (3Hv-1 to 3Hv-25), 4 of which (3Hv-1 to 3Hv-4) comprises 80% of the strains. This heterogeneity may explain why HAdV-3 has become the most prevalent HAdVs type worldwide. The heterogeneity of hexon proteins also shows that the development of a vaccine against HAdV-3 might be challenging. The data on hexon variants provided here may be useful for the future epidemiological study of HAdV-3 infection.
    Matched MeSH terms: Antigenic Variation/genetics*; Antigenic Variation/immunology
  3. Edwards S, Sands JJ
    DTW. Dtsch. Tierarztl. Wochenschr., 1990 Feb;97(2):79-81.
    PMID: 2178905
    Nineteen monoclonal antibodies (MAbs) with specificity for hog cholera virus (HCV) were prepared. They were used in an immune binding (peroxidase linked) assay to determine the reaction patterns of HCV isolates from Europe, Brazil, USA, Japan and Malaysia, as well as laboratory reference strains of the virus. A further panel of 17 MAbs raised against bovine virus diarrhoea virus (BVDV) was included in the study, together with 5 MAbs raised against a non-HCV pestivirus of porcine origin. All the MAbs were also tested against representative strains of BVDV and border disease virus. Six MAbs were HCV-specific, reacting with all isolates of HCV and none of the ruminant viruses. Among the other HCV MAbs geographical variation in reaction patterns was observed. There was evidence of antigenic distinction between recent European isolates, and archive material originally isolated more than 10 years ago.
    Matched MeSH terms: Antigenic Variation
  4. Naik DG
    Trop Parasitol, 2020 05 20;10(1):3-6.
    PMID: 32775284 DOI: 10.4103/tp.TP_17_18
    Malaria, a mosquito-transmitted parasitic disease, has been targeted for elimination in many parts of the world. For many years, Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale and Plasmodium malariae have been known to cause malaria in humans. Now, Plasmodium knowlesi is considered to be an important cause of malaria, especially in Southeast Asia. The emergence of P. knowlesi with zoonotic implication is a challenge in the elimination efforts of malaria in Southeast Asia. P. knowlesi is known to cause severe complicated malaria in humans. P. knowlesi parasite is transmitted between humans and wild macaque through mosquito vectors. It appears that the malaria disease severity and host immune evasion depend on antigenic variation exhibited at the surface of the infected erythrocyte. P. knowlesi is sensitive to antimalarial drug artemisinin. Identification of vector species, their biting behavior, timely correct diagnosis, and treatment are important steps in disease management and control. There is a need to identify and implement effective intervention measures to cut the chain of transmissions from animals to humans. The zoonotic malaria definitely poses a significant challenge in elimination and subsequent eradication of all types of malaria from this globe.
    Matched MeSH terms: Antigenic Variation
  5. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
    Matched MeSH terms: Antigenic Variation*
  6. Chua CL, Sam IC, Merits A, Chan YF
    PLoS Negl Trop Dis, 2016 08;10(8):e0004960.
    PMID: 27571254 DOI: 10.1371/journal.pntd.0004960
    BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood.

    METHODOLOGY/PRINCIPAL FINDINGS: We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes.

    CONCLUSION/SIGNIFICANCE: Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays.

    Matched MeSH terms: Antigenic Variation*
  7. Abd Raman HS, Tan S, August JT, Khan AM
    PeerJ, 2020;7:e7954.
    PMID: 32518710 DOI: 10.7717/peerj.7954
    Background: Influenza A (H5N1) virus is a global concern with potential as a pandemic threat. High sequence variability of influenza A viruses is a major challenge for effective vaccine design. A continuing goal towards this is a greater understanding of influenza A (H5N1) proteome sequence diversity in the context of the immune system (antigenic diversity), the dynamics of mutation, and effective strategies to overcome the diversity for vaccine design.

    Methods: Herein, we report a comprehensive study of the dynamics of H5N1 mutations by analysis of the aligned overlapping nonamer positions (1-9, 2-10, etc.) of more than 13,000 protein sequences of avian and human influenza A (H5N1) viruses, reported over at least 50 years. Entropy calculations were performed on 9,408 overlapping nonamer position of the proteome to study the diversity in the context of immune system. The nonamers represent the predominant length of the binding cores for peptides recognized by the cellular immune system. To further dissect the sequence diversity, each overlapping nonamer position was quantitatively analyzed for four patterns of sequence diversity motifs: index, major, minor and unique.

    Results: Almost all of the aligned overlapping nonamer positions of each viral proteome exhibited variants (major, minor, and unique) to the predominant index sequence. Each variant motif displayed a characteristic pattern of incidence change in relation to increased total variants. The major variant exhibited a restrictive pyramidal incidence pattern, with peak incidence at 50% total variants. Post this peak incidence, the minor variants became the predominant motif for majority of the positions. Unique variants, each sequence observed only once, were present at nearly all of the nonamer positions. The diversity motifs (index and variants) demonstrated complex inter-relationships, with motif switching being a common phenomenon. Additionally, 25 highly conserved sequences were identified to be shared across viruses of both hosts, with half conserved to several other influenza A subtypes.

    Discussion: The presence of distinct sequences (nonatypes) at nearly all nonamer positions represents a large repertoire of reported viral variants in the proteome, which influence the variability dynamics of the viral population. This work elucidated and provided important insights on the components that make up the viral diversity, delineating inherent patterns in the organization of sequence changes that function in the viral fitness-selection. Additionally, it provides a catalogue of all the mutational changes involved in the dynamics of H5N1 viral diversity for both avian and human host populations. This work provides data relevant for the design of prophylactics and therapeutics that overcome the diversity of the virus, and can aid in the surveillance of existing and future strains of influenza viruses.

    Matched MeSH terms: Antigenic Variation
  8. Monath TP
    PMID: 12082985
    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.
    Matched MeSH terms: Antigenic Variation
  9. Smith GJ, Fan XH, Wang J, Li KS, Qin K, Zhang JX, et al.
    Proc Natl Acad Sci U S A, 2006 Nov 07;103(45):16936-41.
    PMID: 17075062
    The development of highly pathogenic avian H5N1 influenza viruses in poultry in Eurasia accompanied with the increase in human infection in 2006 suggests that the virus has not been effectively contained and that the pandemic threat persists. Updated virological and epidemiological findings from our market surveillance in southern China demonstrate that H5N1 influenza viruses continued to be panzootic in different types of poultry. Genetic and antigenic analyses revealed the emergence and predominance of a previously uncharacterized H5N1 virus sublineage (Fujian-like) in poultry since late 2005. Viruses from this sublineage gradually replaced those multiple regional distinct sublineages and caused recent human infection in China. These viruses have already transmitted to Hong Kong, Laos, Malaysia, and Thailand, resulting in a new transmission and outbreak wave in Southeast Asia. Serological studies suggest that H5N1 seroconversion in market poultry is low and that vaccination may have facilitated the selection of the Fujian-like sublineage. The predominance of this virus over a large geographical region within a short period directly challenges current disease control measures.
    Matched MeSH terms: Antigenic Variation
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links