METHODS: Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8): four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum). The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey). Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water), and the baseline control group was sacrificed without treatment.
RESULTS: All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and a significant decrease in inter-trabecular space (Tb.Sp) compared with the ovariectomized control group. The trabecular thickness (Tb.Th) in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp) in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group.
CONCLUSION: In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.
METHODS: We conducted a randomised, double blinded, two-armed parallel study comparing 20 g/day of Tualang Honey versus 20 g/day Honey Cocktail among postmenopausal women aged 45-65 years. The cardiovascular parameters and anthropometrics measurements were assessed at baseline, 6 months, and 12 months of the intervention.
RESULTS: 100 subjects were successfully randomised into the groups. There was a significant decrease in the diastolic blood pressure from 77.92 mmHg at baseline to 73.45 mmHg at 12 months (F-statistic = 2.55, p-value = 0.047) in the Tualang Honey group compared to Honey Cocktail. There was also a significant decrease in the fasting blood sugar from 6.11 mmol/L at baseline to 5.71 mmol/L at 12 months (F-statistic = 4.03, p-value = 0.021) in the Tualang Honey group compared to the Honey Cocktail group. The body mass index remained unchanged at 27 kg/m2 (F-statistic = 1.60, p-value = 0.010) throughout 12 months of the intervention in the Honey Cocktail group.
CONCLUSION: Subjects who received Honey Cocktail showed remarkable effects on body mass index. However, Tualang Honey supplementation showed superior effect in lowering diastolic blood pressure and fasting blood sugar compared to Honey Cocktail. Further studies are required to ascertain the underlying mechanism(s) of Tualang Honey and Honey Cocktail on each observed parameter.
MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant.
RESULTS: The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA.
CONCLUSION: Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.