METHODS/RESULTS: We report a case of a multiple ECG lead misplacement made across two different planes of the heart, resulting in a bizarre series of ECG, mimicking an acute high lateral myocardial infarction. Multiple ECGs were done as there were abrupt changes compared to previous ECGS. Patient was pain free and administration of potentially harmful procedures and treatments were prevented.
CONCLUSION: Our case demonstrated the importance of high clinical suspicion in diagnosing ECG lead misplacement. It is the responsibility of both the healthcare workers who are performing and interpreting the ECG to be alert of a possible lead malposition, to prevent untoward consequences to the patient.
METHODS: A convolutional auto-encoder (CAE) based nonlinear compression structure is implemented to reduce the signal size of arrhythmic beats. Long-short term memory (LSTM) classifiers are employed to automatically recognize arrhythmias using ECG features, which are deeply coded with the CAE network.
RESULTS: Based upon the coded ECG signals, both storage requirement and classification time were considerably reduced. In experimental studies conducted with the MIT-BIH arrhythmia database, ECG signals were compressed by an average 0.70% percentage root mean square difference (PRD) rate, and an accuracy of over 99.0% was observed.
CONCLUSIONS: One of the significant contributions of this study is that the proposed approach can significantly reduce time duration when using LSTM networks for data analysis. Thus, a novel and effective approach was proposed for both ECG signal compression, and their high-performance automatic recognition, with very low computational cost.