Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Grigg MJ, William T, Dhanaraj P, Menon J, Barber BE, von Seidlein L, et al.
    BMJ Open, 2014 Aug 19;4(8):e006005.
    PMID: 25138814 DOI: 10.1136/bmjopen-2014-006005
    INTRODUCTION: Malaria due to Plasmodium knowlesi is reported throughout South-East Asia, and is the commonest cause of it in Malaysia. P. knowlesi replicates every 24 h and can cause severe disease and death. Current 2010 WHO Malaria Treatment Guidelines have no recommendations for the optimal treatment of non-severe knowlesi malaria. Artemisinin-combination therapies (ACT) and chloroquine have each been successfully used to treat knowlesi malaria; however, the rapidity of parasite clearance has not been prospectively compared. Malaysia's national policy for malaria pre-elimination involves mandatory hospital admission for confirmed malaria cases with discharge only after two negative blood films; use of a more rapidly acting antimalarial agent would have health cost benefits. P. knowlesi is commonly microscopically misreported as P. malariae, P. falciparum or P. vivax, with a high proportion of the latter two species being chloroquine-resistant in Malaysia. A unified ACT-treatment protocol would provide effective blood stage malaria treatment for all Plasmodium species.

    METHODS AND ANALYSIS: ACT KNOW, the first randomised controlled trial ever performed in knowlesi malaria, is a two-arm open-label trial with enrolments over a 2-year period at three district sites in Sabah, powered to show a difference in proportion of patients negative for malaria by microscopy at 24 h between treatment arms (clinicaltrials.gov #NCT01708876). Enrolments started in December 2012, with completion expected by September 2014. A total sample size of 228 is required to give 90% power (α 0.05) to determine the primary end point using intention-to-treat analysis. Secondary end points include parasite clearance time, rates of recurrent infection/treatment failure to day 42, gametocyte carriage throughout follow-up and rates of anaemia at day 28, as determined by survival analysis.

    ETHICS AND DISSEMINATION: This study has been approved by relevant institutional ethics committees in Malaysia and Australia. Results will be disseminated to inform knowlesi malaria treatment policy in this region through peer-reviewed publications and academic presentations.

    TRIAL REGISTRATION NUMBER: NCT01708876.

    Matched MeSH terms: Artemisinins/therapeutic use*
  2. Mathenge PG, Low SK, Vuong NL, Mohamed MYF, Faraj HA, Alieldin GI, et al.
    Parasitol Int, 2020 Feb;74:101919.
    PMID: 31015034 DOI: 10.1016/j.parint.2019.04.016
    BACKGROUND: Malaria parasites have developed resistance to most of the known antimalarial drugs in clinical practice, with reports of artemisinin resistance emerging in South East Asia (SEA). We sort to find the status of artemisinin resistance and efficacy of different modalities of the current artemisinin-based combination therapies (ACTs).

    METHODS: We carried out a systematic search in 11 electronic databases to identify in vivo studies published between 2001 and 2017 that reported artemisinin resistance. This was then followed by A network meta-analysis to compare the efficacy of different ACTs. Quality assessment was performed using the Cochrane Risk of Bias (ROB) tool for randomized controlled trials and National Institute of Health (NIH) tool for cross-sectional studies. The study protocol was registered in PROSPERO under number CRD42018087574.

    RESULTS: With 8400 studies initially identified, 82 were eligible for qualitative and quantitative analysis. Artemisinin resistance was only reported in South East Asia. K13 mutation C580Y was the most abundant mutation associated with resistance having an abundance of 63.1% among all K13 mutations reported. Although the overall network meta-analysis had shown good performance of dihydroartemisinin piperaquine in the early years, a subgroup analysis of the recent years revealed a poor performance of the drug in relation to recrudescence, clinical failure and parasitological failure especially in the artemisinin resistant regions.

    CONCLUSION: With report of high resistance and treatment failure against the leading artemisinin combination therapy in South East Asia, it is imperative that a new drug or a formulation is developed before further spread of resistance.

    Matched MeSH terms: Artemisinins/therapeutic use*
  3. Salman S, Bendel D, Lee TC, Templeton D, Davis TM
    Antimicrob Agents Chemother, 2015;59(6):3208-15.
    PMID: 25801552 DOI: 10.1128/AAC.05014-14
    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using established population compartmental pharmacokinetic models. Parasite clearance was prompt (median parasite clearance time, 24 h), and there were no serious adverse events. Consistent with studies in healthy adults (S. Salman, D. Bendel, T. C. Lee, D. Templeton, and T. M. E. Davis, Antimicrob Agents Chemother 59:3197-3207, 2015, http://dx.doi.org/10.1128/AAC.05013-14), the absorption of sublingual artemether was biphasic, and multiple dosing was associated with the autoinduction of the metabolism of artemether to DHA (which itself has potent antimalarial activity). In contrast to studies using healthy volunteers, pharmacokinetic modeling indicated that the first absorption phase did not avoid first-pass metabolism, suggesting that the drug is transferred to the upper intestine through postdose fluid/food intake. Simulations using the present data and those from an earlier study in older Melanesian children with uncomplicated malaria treated with artemether-lumefantrine tablets suggested that the bioavailability of sublingual artemether was at least equivalent to that after conventional oral artemether-lumefantrine (median [interquartile range] areas under the concentration-time curve for artemether, 3,403 [2,471 to 4,771] versus 3,063 [2,358 to 4,514] μg · h/liter, respectively; and for DHA, 2,958 [2,146 to 4,278] versus 2,839 [1,812 to 3,488] μg · h/liter, respectively; P ≥ 0.42). These findings suggest that sublingual artemether could be used as prereferral treatment for sick children before transfer for definitive management of severe or moderately severe malaria.
    Matched MeSH terms: Artemisinins/therapeutic use
  4. Naing C, Mak JW, Aung K, Wong JY
    Trans R Soc Trop Med Hyg, 2013 Feb;107(2):65-73.
    PMID: 23222952 DOI: 10.1093/trstmh/trs019
    The present review aimed to synthesise available evidence on the efficacy of dihydroartemisinin-piperaquine (DP) in treating uncomplicated Plasmodium falciparum malaria in people living in malaria-endemic countries by performing a meta-analysis of relevant studies. We searched relevant studies in electronic data bases up to December 2011. Published results from randomised controlled trials (RCTs) comparing efficacy of DP with other artemisinin-based combination therapies (ACTs), or non-ACTs, or placebo were selected. The primary endpoint was 28-day and 42-day treatment failure. We identified 26 RCTs. Many of the studies included in the present review were of high quality. Overall, DP, artesunate-mefloquine (MAS3) and artemether-lumefentrine (AL) were equally effective for reducing the risk of recurrent parasitaemia. The PCR confirmed efficacy of DP (99.5%) and MAS3 (97.7%) at day 28 exceeded 90%; both are efficacious. Comparable efficacy was also found for DP (95.6%) and AL (94.3%). The present review has documented that DP is comparable to other currently used ACTs such as MAS3 and AL in treating uncomplicated falciparum malaria. The better safety profile of DP and once-daily dosage improves adherence and its fixed co-formulation ensures that both drugs are taken together. Our conclusion is that DP has the potential to become a first-line antimalarial drug.
    Matched MeSH terms: Artemisinins/therapeutic use*
  5. Barber BE, Grigg MJ, William T, Yeo TW, Anstey NM
    Trends Parasitol, 2017 03;33(3):242-253.
    PMID: 27707609 DOI: 10.1016/j.pt.2016.09.002
    Plasmodium knowlesi occurs across Southeast Asia and is the most common cause of malaria in Malaysia. High parasitaemias can develop rapidly, and the risk of severe disease in adults is at least as high as in falciparum malaria. Prompt initiation of effective treatment is therefore essential. Intravenous artesunate is highly effective in severe knowlesi malaria and in those with moderately high parasitaemia but otherwise uncomplicated disease. Both chloroquine and artemisinin-combination therapy (ACT) are highly effective for uncomplicated knowlesi malaria, with faster parasite clearance times and lower anaemia rates with ACT. Given the difficulties with microscope diagnosis of P. knowlesi, a unified treatment strategy of ACT for all Plasmodium species is recommended in coendemic regions.
    Matched MeSH terms: Artemisinins/therapeutic use*
  6. Grigg MJ, William T, Menon J, Barber BE, Wilkes CS, Rajahram GS, et al.
    Clin Infect Dis, 2016 Jun 01;62(11):1403-1411.
    PMID: 27107287 DOI: 10.1093/cid/ciw121
    BACKGROUND: Chloroquine (CQ)-resistant Plasmodium vivax is increasingly reported throughout southeast Asia. The efficacy of CQ and alternative artemisinin combination therapies (ACTs) for vivax malaria in Malaysia is unknown.

    METHODS: A randomized, controlled trial of CQ vs artesunate-mefloquine (AS-MQ) for uncomplicated vivax malaria was conducted in 3 district hospitals in Sabah, Malaysia. Primaquine was administered on day 28. The primary outcome was the cumulative risk of treatment failure by day 28 by Kaplan-Meier analysis.

    RESULTS: From 2012 to 2014, 103 adults and children were enrolled. Treatment failure by day 28 was 61.1% (95% confidence interval [CI], 46.8-75.6) after CQ and 0% (95% CI, 0-.08) following AS-MQ (P < .001), of which 8.2% (95% CI, 2.5-9.6) were early treatment failures. All patients with treatment failure had therapeutic plasma CQ concentrations at day 7. Compared with CQ, AS-MQ was associated with faster parasite clearance (normalized clearance slope, 0.311 vs 0.127; P < .001) and fever clearance (mean, 19.0 vs 37.7 hours; P =001) and with lower risk of anemia at day 28 (odds ratio = 3.7; 95% CI, 1.5-9.3; P =005). Gametocytes were present at day 28 in 23.8% (10/42) of patients following CQ vs none with AS-MQ (P < .001). AS-MQ resulted in lower bed occupancy: 4037 vs 6510 days/1000 patients (incidence rate ratio 0.62; 95% CI, .60-.65; P < .001). One patient developed severe anemia not regarded as related to their AS-MQ treatment.

    CONCLUSIONS: High-grade CQ-resistant P. vivax is prevalent in eastern Malaysia. AS-MQ is an efficacious ACT for all malaria species. Wider CQ-efficacy surveillance is needed in vivax-endemic regions with earlier replacement with ACT when treatment failure is detected.Clinical Trials Registration NCT01708876.

    Matched MeSH terms: Artemisinins/therapeutic use*
  7. Grigg MJ, William T, Menon J, Dhanaraj P, Barber BE, Wilkes CS, et al.
    Lancet Infect Dis, 2016 Feb;16(2):180-188.
    PMID: 26603174 DOI: 10.1016/S1473-3099(15)00415-6
    BACKGROUND: The zoonotic parasite Plasmodium knowlesi has become the most common cause of human malaria in Malaysia and is present throughout much of southeast Asia. No randomised controlled trials have been done to identify the optimum treatment for this emerging infection. We aimed to compare artesunate-mefloquine with chloroquine to define the optimum treatment for uncomplicated P knowlesi malaria in adults and children.

    METHODS: We did this open-label, randomised controlled trial at three district hospitals in Sabah, Malaysia. Patients aged 1 year or older with uncomplicated P knowlesi malaria were randomly assigned, via computer-generated block randomisation (block sizes of 20), to receive oral artesunate-mefloquine (target dose 12 mg/kg artesunate and 25 mg/kg mefloquine) or chloroquine (target dose 25 mg/kg). Research nursing staff were aware of group allocation, but allocation was concealed from the microscopists responsible for determination of the primary endpoint, and study participants were not aware of drug allocation. The primary endpoint was parasite clearance at 24 h. Analysis was by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT01708876.

    FINDINGS: Between Oct 16, 2012, and Dec 13, 2014, we randomly assigned 252 patients to receive either artesunate-mefloquine (n=127) or chloroquine (n=125); 226 (90%) patients comprised the modified intention-to-treat population. 24 h after treatment, we recorded parasite clearance in 97 (84% [95% CI 76-91]) of 115 patients in the artesunate-mefloquine group versus 61 (55% [45-64]) of 111 patients in the chloroquine group (difference in proportion 29% [95% CI 18·0-40·8]; p<0·0001). Parasite clearance was faster in patients given artesunate-mefloquine than in those given chloroquine (18·0 h [range 6·0-48·0] vs 24·0 h [6·0-60·0]; p<0·0001), with faster clearance of ring stages in the artesunate-mefloquine group (mean time to 50% clearance of baseline parasites 8·6 h [95% CI 7·9-9·4] vs 13·8 h [12·1-15·4]; p<0·0001). Risk of anaemia within 28 days was lower in patients in the artesunate-mefloquine group (71 [62%; 95% CI 52·2-70·6]) than in those in the chloroquine group (83 [75%; 65·6-82·5]; p=0·035). Gametocytaemia as detected by PCR for pks25 was present in 44 (86%) of 51 patients in the artesunate-mefloquine group and 41 (84%) of 49 patients in the chloroquine group at baseline, and in three (6%) of 49 patients and two (4%) of 48 patients, respectively, at day 7. Fever clearance was faster in the artesunate-mefloquine group (mean 11·5 h [95% CI 8·3-14·6]) than in the chloroquine group (14·8 h [11·7-17·8]; p=0·034). Bed occupancy was 2426 days per 1000 patients in the artesunate-mefloquine group versus 2828 days per 1000 patients in the chloroquine group (incidence rate ratio 0·858 [95% CI 0·812-0·906]; p<0·0001). One (<1%) patient in the artesunate-mefloquine group had a serious neuropsychiatric event regarded as probably related to study drug.

    INTERPRETATION: Artesunate-mefloquine is highly efficacious for treatment of uncomplicated P knowlesi malaria. The rapid therapeutic response of the drug offers significant advantages compared with chloroquine monotherapy and supports a unified treatment policy for artemisinin-based combination therapy for all Plasmodium species in co-endemic areas.

    FUNDING: Malaysian Ministry of Health, Australian National Health and Medical Research Council, and Asia Pacific Malaria Elimination Network.

    Matched MeSH terms: Artemisinins/therapeutic use*
  8. Kam MYY, Yap WSP
    Biotechnol Genet Eng Rev, 2020 Apr;36(1):1-31.
    PMID: 32308142 DOI: 10.1080/02648725.2020.1749818
    Artemisinin (ART) is an antimalarial compound that possesses a variety of novel biological activities. Due to the low abundance of ART in natural sources, agricultural supply has been erratic, and prices are highly volatile. While heterologous biosynthesis and semi-synthesis are advantageous in certain aspects, these approaches remained disadvantageous in terms of productivity and cost-effectiveness. Therefore, further improvement in ART production calls for approaches that should supplement the agricultural production gap, while reducing production costs and stabilising supply. The present review offers a discussion on the elicitation of plants and/or in vitro cultures as an economically feasible yield enhancement strategy to address the global problem of access to affordable ART. Deemed critical for the manipulation of biosynthetic potential, the mechanism of ART biosynthesis is reviewed. It includes a discussion on the current biotechnological solutions to ART production, focusing on semi-synthesis and elicitation. A brief commentary on the possible aspects that influence elicitation efficiency and how oxidative stress modulates ART synthesis is also presented. Based on the critical analysis of current literature, a hypothesis is put forward to explain the possible involvement of enzymes in assisting the final non-enzymatic transformation step leading to ART formation. This review highlights the critical factors limiting the success of elicitor-induced modulation of ART metabolism, that will help inform strategies for future improvement of ART production. Additionally, new avenues for future research based on the proposed hypothesis will lead to exciting perspectives in this research area and continue to enhance our understanding of this intricate metabolic process.
    Matched MeSH terms: Artemisinins/therapeutic use
  9. Wong JW, Yuen KH, Nagappan S, Shahul WS, Ho SS, Gan EK, et al.
    J Pharm Pharmacol, 2003 Feb;55(2):193-8.
    PMID: 12631411
    We have evaluated the therapeutic equivalence of a beta-cyclodextrin-artemisinin complex at an artemisinin dose of 150 mg, with a commercial reference preparation, Artemisinin 250 at a recommended dose of 250 mg. One hundred uncomplicated falciparum malarial patients were randomly assigned to orally receive either beta-cyclodextrin-artemisinin complex (containing 150 mg artemisinin) twice daily for five days or the active comparator (containing 250 mg artemisinin) twice daily for five days. The patients were hospitalized for seven days and were required to attend follow up assessments on days 14, 21, 28 and 35. All patients in both treatment groups were cured of the infection and achieved therapeutic success. At day seven of treatment, all patient blood was clear of the parasites and the sublingual temperature of all patients was less than 37.5 degrees C. Moreover, the parasite clearance time in both treatment groups was similar, being approximately three days after initiation of treatment. Comparable plasma artemisinin concentrations were observed between patients in both treatment groups at 1.5 and 3.0 h, although slightly higher levels were obtained with patients in the beta-cyclodextrin-artemisinin complex-treated group. The beta-cyclodextrin-artemisinin complex at a dose of 150 mg artemisinin was therapeutically equivalent to 250 mg Artemisinin 250. Additionally, patients receiving beta-cyclodextrin-artemisinin complex showed less variability in their plasma artemisinin concentrations at 1.5 h post-dosing, which suggested a more consistent rate of drug absorption.
    Matched MeSH terms: Artemisinins/therapeutic use*
  10. Grigg MJ, William T, Piera KA, Rajahram GS, Jelip J, Aziz A, et al.
    Malar J, 2018 Dec 10;17(1):463.
    PMID: 30526613 DOI: 10.1186/s12936-018-2593-x
    BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia.

    METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count 

    Matched MeSH terms: Artemisinins/therapeutic use
  11. Permala J, Tarning J, Nosten F, White NJ, Karlsson MO, Bergstrand M
    PMID: 28242661 DOI: 10.1128/AAC.02491-16
    Intermittent preventive treatment (IPT) is used to reduce malaria morbidity and mortality, especially in vulnerable groups such as children and pregnant women. IPT with the fixed dose combination of piperaquine (PQ) and dihydroartemisinin (DHA) is being evaluated as a potential mass treatment to control and eliminate artemisinin-resistant falciparum malaria. This study explored alternative DHA-PQ adult dosing regimens compared to the monthly adult dosing regimen currently being studied in clinical trials. A time-to-event model describing the concentration-effect relationship of preventive DHA-PQ administration was used to explore the potential clinical efficacy of once-weekly adult dosing regimens. Loading dose strategies were evaluated and the advantage of weekly dosing regimen was tested against different degrees of adherence. Assuming perfect adherence, three tablets weekly dosing regimen scenarios maintained malaria incidence of 0.2 to 0.3% per year compared to 2.1 to 2.6% for all monthly dosing regimen scenarios and 52% for the placebo. The three tablets weekly dosing regimen was also more forgiving (i.e., less sensitive to poor adherence), resulting in a predicted ∼4% malaria incidence per year compared to ∼8% for dosing regimen of two tablets weekly and ∼10% for monthly regimens (assuming 60% adherence and 35% interindividual variability). These results suggest that weekly dosing of DHA-PQ for malaria chemoprevention would improve treatment outcomes compared to monthly administration by lowering the incidence of malaria infections, reducing safety concerns about high PQ peak plasma concentrations and being more forgiving. In addition, weekly dosing is expected to reduce the selection pressure for PQ resistance.
    Matched MeSH terms: Artemisinins/therapeutic use*
  12. Rajahram GS, Cooper DJ, William T, Grigg MJ, Anstey NM, Barber BE
    Clin Infect Dis, 2019 10 30;69(10):1703-1711.
    PMID: 30624597 DOI: 10.1093/cid/ciz011
    BACKGROUND: Plasmodium knowlesi causes severe and fatal malaria, and incidence in Southeast Asia is increasing. Factors associated with death are not clearly defined.

    METHODS: All malaria deaths in Sabah, Malaysia, from 2015 to 2017 were identified from mandatory reporting to the Sabah Department of Health. Case notes were reviewed, and a systematic review of these and all previously reported fatal P. knowlesi cases was conducted. Case fatality rates (CFRs) during 2010-2017 were calculated using incidence data from the Sabah Department of Health.

    RESULTS: Six malaria deaths occurred in Sabah during 2015-2017, all from P. knowlesi. Median age was 40 (range, 23-58) years; 4 cases (67%) were male. Three (50%) had significant cardiovascular comorbidities and 1 was pregnant. Delays in administering appropriate therapy contributed to 3 (50%) deaths. An additional 26 fatal cases were included in the systematic review. Among all 32 cases, 18 (56%) were male; median age was 56 (range, 23-84) years. Cardiovascular-metabolic disease, microscopic misdiagnosis, and delay in commencing intravenous treatment were identified in 11 of 32 (34%), 26 of 29 (90%), and 11 of 31 (36%) cases, respectively. The overall CFR during 2010-2017 was 2.5/1000: 6.0/1000 for women and 1.7/1000 for men (P = .01). Independent risk factors for death included female sex (odds ratio, 2.6; P = .04), and age ≥45 years (odds ratio, 4.7; P < .01).

    CONCLUSIONS: Earlier presentation, more rapid diagnosis, and administration of intravenous artesunate may avoid fatal outcomes, particularly in females, older adults, and patients with cardiovascular comorbidities.

    Matched MeSH terms: Artemisinins/therapeutic use
  13. Parapini S, Olliaro P, Navaratnam V, Taramelli D, Basilico N
    Antimicrob Agents Chemother, 2015 Jul;59(7):4046-52.
    PMID: 25918150 DOI: 10.1128/AAC.00183-15
    Artemisinins are peroxidic antimalarial drugs known to be very potent but highly chemically unstable; they degrade in the presence of ferrous iron, Fe(II)-heme, or biological reductants. Less documented is how this translates into chemical stability and antimalarial activity across a range of conditions applying to in vitro testing and clinical situations. Dihydroartemisinin (DHA) is studied here because it is an antimalarial drug on its own and the main metabolite of other artemisinins. The behaviors of DHA in phosphate-buffered saline, plasma, or erythrocyte lysate at different temperatures and pH ranges were examined. The antimalarial activity of the residual drug was evaluated using the chemosensitivity assay on Plasmodium falciparum, and the extent of decomposition of DHA was established through use of high-performance liquid chromatography with electrochemical detection analysis. The role of the Fe(II)-heme was investigated by blocking its reactivity using carbon monoxide (CO). A significant reduction in the antimalarial activity of DHA was seen after incubation in plasma and to a lesser extent in erythrocyte lysate. Activity was reduced by half after 3 h and almost completely abolished after 24 h. Serum-enriched media also affected DHA activity. Effects were temperature and pH dependent and paralleled the increased rate of decomposition of DHA from pH 7 upwards and in plasma. These results suggest that particular care should be taken in conducting and interpreting in vitro studies, prone as their results are to experimental and drug storage conditions. Disorders such as fever, hemolysis, or acidosis associated with malaria severity may contribute to artemisinin instability and reduce their clinical efficacy.
    Matched MeSH terms: Artemisinins/therapeutic use
  14. Odedra A, Webb L, Marquart L, Britton LJ, Chalon S, Moehrle JJ, et al.
    Am J Trop Med Hyg, 2020 11;103(5):1910-1917.
    PMID: 32815508 DOI: 10.4269/ajtmh.20-0491
    Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5-8 days post-treatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26-14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91-27.47; P = 0.06), this risk disappeared when corrected for PCB. Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory.
    Matched MeSH terms: Artemisinins/therapeutic use
  15. Seethamchai S, Buppan P, Kuamsab N, Teeranaipong P, Putaporntip C, Jongwutiwes S
    Infect Genet Evol, 2018 11;65:35-42.
    PMID: 30016713 DOI: 10.1016/j.meegid.2018.07.015
    The amino acid substitution at residue 76 of the food vacuolar transmembrane protein encoded by the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) is an important, albeit imperfect, determinant of chloroquine susceptibility status of the parasite. Other mutations in Pfcrt can modulate susceptibility of P. falciparum to other antimalarials capable of interfering with heme detoxification process, and may exert compensatory effect on parasite growth rate. To address whether nationwide implementation of artemisinin combination therapy (ACT) in Thailand could affect sequence variation in exon 2 and introns of Pfcrt, we analyzed 136 P. falciparum isolates collected during 1997 and 2016 from endemic areas bordering Myanmar, Cambodia and Malaysia. Results revealed 6 haplotypes in exon 2 of Pfcrt with 2 novel substitutions at c.243A > G (p.R81) and c.251A > T (p.N84I). Positive selection was observed at amino acid residues 75, 76 and 97. Four, 3, and 2 alleles of microsatellite (AT/TA) repeats occurred in introns 1, 2 and 4, respectively, resulting in 7 different 3-locus haplotypes. The number of haplotypes and haplotype diversity of exon 2, and introns 1, 2 and 4 were significantly greater among isolates collected during 2009 and 2016 than those collected during 1997 and 2008 when 3-day ACT and 2-day ACT regimens were implemented nationwide, respectively (p 
    Matched MeSH terms: Artemisinins/therapeutic use
  16. Karnad DR, Nor MBM, Richards GA, Baker T, Amin P, Council of the World Federation of Societies of Intensive and Critical Care Medicine
    J Crit Care, 2018 Feb;43:356-360.
    PMID: 29132978 DOI: 10.1016/j.jcrc.2017.11.007
    Severe malaria is common in tropical countries in Africa, Asia, Oceania and South and Central America. It may also occur in travelers returning from endemic areas. Plasmodium falciparum accounts for most cases, although P vivax is increasingly found to cause severe malaria in Asia. Cerebral malaria is common in children in Africa, manifests as coma and seizures, and has a high morbidity and mortality. In other regions, adults may also develop cerebral malaria but neurological sequelae in survivors are rare. Acute kidney injury, liver dysfunction, thrombocytopenia, disseminated intravascular coagulopathy (DIC) and acute respiratory distress syndrome (ARDS) are also common in severe malaria. Metabolic abnormalities include hypoglycemia, hyponatremia and lactic acidosis. Bacterial infection may coexist in patients presenting with shock or ARDS and this along with a high parasite load has a high mortality. Intravenous artesunate has replaced quinine as the antimalarial agent of choice. Critical care management as per severe sepsis is also applicable to severe malaria. Aggressive fluid boluses may not be appropriate in children. Blood transfusions may be required and treatment of seizures and raised intracranial pressure is important in cerebral malaria in children. Mortality in severe disease ranges from 8 to 30% despite treatment.
    Matched MeSH terms: Artemisinins/therapeutic use
  17. Yusof W, Gan SH
    Clin Chim Acta, 2009 May;403(1-2):105-9.
    PMID: 19361454 DOI: 10.1016/j.cca.2009.01.032
    CYP2A6 gene encodes the principal enzyme involved in the metabolism of many drugs including artesunate. We developed a simplified duplex nested PCR method for the detection of the CYP2A61B, CYP2A62, CYP2A64, CYP2A67, CYP2A68 and CYP2A69 variant alleles highly prevalent among Malaysian population.
    Matched MeSH terms: Artemisinins/therapeutic use
  18. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al.
    Clin Infect Dis, 2018 Jul 18;67(3):350-359.
    PMID: 29873683 DOI: 10.1093/cid/ciy065
    BACKGROUND: Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking.

    METHODS: Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia.

    RESULTS: Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/μL [interquartile range, 538-8481/μL]) than in falciparum (9600/μL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/μL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults).

    CONCLUSIONS: Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/μL.

    Matched MeSH terms: Artemisinins/therapeutic use
  19. Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al.
    Clin Infect Dis, 2013 Feb;56(3):383-97.
    PMID: 23087389 DOI: 10.1093/cid/cis902
    Plasmodium knowlesi commonly causes severe malaria in Malaysian Borneo, with high case-fatality rates reported. We compared risk, spectrum, and outcome of severe disease from P. knowlesi, Plasmodium falciparum, and Plasmodium vivax and outcomes following introduction of protocols for early referral and intravenous artesunate for all severe malaria.
    Matched MeSH terms: Artemisinins/therapeutic use*
  20. Khammanee T, Sawangjaroen N, Buncherd H, Tun AW, Thanapongpichat S
    Korean J Parasitol, 2019 Aug;57(4):369-377.
    PMID: 31533403 DOI: 10.3347/kjp.2019.57.4.369
    Artemisinin-based combination therapy (ACT) resistance is widespread throughout the Greater Mekong Subregion. This raises concern over the antimalarial treatment in Thailand since it shares borders with Cambodia, Laos, and Myanmar where high ACT failure rates were reported. It is crucial to have information about the spread of ACT resistance for efficient planning and treatment. This study was to identify the molecular markers for antimalarial drug resistance: Pfkelch13 and Pfmdr1 mutations from 5 provinces of southern Thailand, from 2012 to 2017, of which 2 provinces on the Thai- Myanmar border (Chumphon and Ranong), one on Thai-Malaysia border (Yala) and 2 from non-border provinces (Phang Nga and Surat Thani). The results showed that C580Y mutation of Pfkelch13 was found mainly in the province on the Thai-Myanmar border. No mutations in the PfKelch13 gene were found in Surat Thani and Yala. The Pfmdr1 gene isolated from the Thai-Malaysia border was a different pattern from those found in other areas (100% N86Y) whereas wild type strain was present in Phang Nga. Our study indicated that the molecular markers of artemisinin resistance were spread in the provinces bordering along the Thai-Myanmar, and the pattern of Pfmdr1 mutations from the areas along the international border of Thailand differed from those of the non-border provinces. The information of the molecular markers from this study highlighted the recent spread of artemisinin resistant parasites from the endemic area, and the data will be useful for optimizing antimalarial treatment based on regional differences.
    Matched MeSH terms: Artemisinins/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links