Displaying all 9 publications

Abstract:
Sort:
  1. Lee WX, Basri DF, Ghazali AR
    Molecules, 2017 Mar 17;22(3).
    PMID: 28304328 DOI: 10.3390/molecules22030463
    The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5) against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923, Escherichia coli O157 and Pseudomonas aeruginosa 15442. However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.
    Matched MeSH terms: Bacteria/ultrastructure; Gram-Negative Bacteria/ultrastructure; Gram-Positive Bacteria/ultrastructure
  2. Zulkifly S, Hanshew A, Young EB, Lee P, Graham ME, Graham ME, et al.
    Am J Bot, 2012 Sep;99(9):1541-52.
    PMID: 22947483 DOI: 10.3732/ajb.1200161
    The filamentous chlorophyte Cladophora produces abundant nearshore populations in marine and freshwaters worldwide, often dominating periphyton communities and producing nuisance growths under eutrophic conditions. High surface area and environmental persistence foster such high functional and taxonomic diversity of epiphytic microfauna and microalgae that Cladophora has been labeled an ecological engineer. We tested the hypotheses that (1) Cladophora supports a structurally and functionally diverse epiphytic prokaryotic microbiota that influences materials cycling and (2) mutualistic host-microbe interactions occur. Because previous molecular sequencing-based analyses of the microbiota of C. glomerata found as western Lake Michigan beach drift had identified pathogenic associates such as Escherichia coli, we also asked if actively growing lentic C. glomerata harbors known pathogens.
    Matched MeSH terms: Bacteria/ultrastructure
  3. Sundram S, Meon S, Seman IA, Othman R
    J Microbiol, 2011 Aug;49(4):551-7.
    PMID: 21887636 DOI: 10.1007/s12275-011-0489-3
    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.
    Matched MeSH terms: Bacteria/ultrastructure
  4. Ramli S, Radu S, Shaari K, Rukayadi Y
    Biomed Res Int, 2017;2017:9024246.
    PMID: 29410966 DOI: 10.1155/2017/9024246
    The aim of this study was to determine antibacterial activity of S. polyanthum L. (salam) leaves extract foodborne pathogens. All the foodborne pathogens were inhibited after treating with extract in disk diffusion test with range 6.67 ± 0.58-9.67 ± 0.58 mm of inhibition zone. The range of MIC values was between 0.63 and 1.25 mg/mL whereas MBC values were in the range 0.63 mg/mL to 2.50 mg/mL. In time-kill curve, L. monocytogenes and P. aeruginosa were found completely killed after exposing to extract in 1 h incubation at 4x MIC. Four hours had been taken to completely kill E. coli, S. aureus, V. cholerae, and V. parahaemolyticus at 4x MIC. However, the population of K. pneumoniae, P. mirabilis, and S. typhimurium only reduced to 3 log CFU/mL. The treated cell showed cell rupture and leakage of the cell cytoplasm in SEM observation. The significant reduction of natural microflora in grapes fruit was started at 0.50% of extract at 5 min and this concentration also was parallel to sensory attributes acceptability where application of extract was accepted by the panellists until 5%. In conclusion, S. polyanthum extract exhibits antimicrobial activities and thus might be developed as natural sanitizer for washing raw food materials.
    Matched MeSH terms: Bacteria/ultrastructure
  5. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht MC, et al.
    Water Res, 2010 Aug;44(15):4341-50.
    PMID: 20580402 DOI: 10.1016/j.watres.2010.05.023
    Microbial granular sludge that is capable to treat textile wastewater in a single reactor under intermittent anaerobic and aerobic conditions was developed in this study. The granules were cultivated using mixed sewage and textile mill sludge in combination with anaerobic granules collected from an anaerobic sludge blanket reactor as seed. The granules were developed in a single sequential batch reactor (SBR) system under alternating anaerobic and aerobic condition fed with synthetic textile wastewater. The characteristics of the microbial granular sludge were monitored throughout the study period. During this period, the average size of the granules increased from 0.02 +/- 0.01 mm to 2.3 +/- 1.0 mm and the average settling velocity increased from 9.9 +/- 0.7 m h(-1) to 80 +/- 8 m h(-1). This resulted in an increased biomass concentration (from 2.9 +/- 0.8 g L(-1) to 7.3 +/- 0.9 g L(-1)) and mean cell residence time (from 1.4 days to 8.3 days). The strength of the granules, expressed as the integrity coefficient also improved. The sequential batch reactor system demonstrated good removal of COD and ammonia of 94% and 95%, respectively, at the end of the study. However, only 62% of color removal was observed. The findings of this study show that granular sludge could be developed in a single reactor with an intermittent anaerobic-aerobic reaction phase and is capable in treating the textile wastewater.
    Matched MeSH terms: Bacteria/ultrastructure
  6. Sharma N, Singh V, Pandey AK, Mishra BN, Kulsoom M, Dasgupta N, et al.
    Biomolecules, 2019 11 21;9(12).
    PMID: 31766572 DOI: 10.3390/biom9120764
    Nanoparticles (NPs) possessing antibacterial activity represent an effective way of overcoming bacterial resistance. In the present work, we report a novel formulation of a nanoantibiotic formed using Ampicillin/sulbactam (Ams) and a zinc oxide nanoparticle (ZnO NP). 'ZnO NP-Ams' nanoantibiotic formulation is optimized using response surface methodology coupled genetic algorithm approach. The optimized formulation of nanoantibiotic (ZnO NP: 49.9 μg/mL; Ams: 33.6 μg/mL; incubation time: 27 h) demonstrated 15% enhanced activity compared to the unoptimized formulation against K. pneumoniae. The reactive oxygen species (ROS) generation was directly proportional to the interaction time of nanoantibiotic and K. pneumoniae after the initial lag phase of ~18 h as evident from 2'-7'-Dichlorodihydrofluorescein diacetate assay. A low minimum inhibitory concentration (6.25 μg/mL) of nanoantibiotic formulation reveals that even a low concentration of nanoantibiotic can prove to be effective against K. pneumoniae. The importance of nanoantibiotic formulation is also evident by the fact that the 100 μg/mL of Ams and 25 µg of ZnO NP was required individually to inhibit the growth of K. pneumonia, whereas only 6.25 μg/mL of optimized nanoantibiotic formulation (ZnO NP and Ams in the ratio of 49.9: 33.6 in μg/mL and conjugation time of 27 h) was needed for the same.
    Matched MeSH terms: Bacteria/ultrastructure
  7. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
    Matched MeSH terms: Bacteria/ultrastructure
  8. Ibrahim D, Osman H
    J Ethnopharmacol, 1995 Mar;45(3):151-6.
    PMID: 7623478
    Ethanolic extract of Cassia alata leaves was investigated for its antimicrobial activities on several microorganisms including bacteria, yeast, dermatophytic fungi and non-dermatophytic fungi. In vitro, the extract exhibited high activity against various species of dermatophytic fungi but low activity against non-dermatophytic fungi. However, bacterial and yeast species showed resistance against in vitro treatment with the extract. The minimum inhibitory concentration (MIC) values of the extract revealed that Trichophyton mentagorphytes var. interdigitale, Trichophyton mentagrophytes var. mentagorophytes, Trichophyton rubrum and Microsporum gypseum had the MIC of 125 mg/ml, whereas Microsporum canis had the MIC of 62.5 mg/ml. The inhibition can be observed on the macroconidia of Microsporum gypseum which resulted in structural degeneration beyond repair. The mechanism of inhibition can be related to the cell leakage as observed by irregular, wrinkle shape and loss in rigidity of the macroconidia.
    Matched MeSH terms: Bacteria/ultrastructure
  9. Barbour A, Tagg J, Abou-Zied OK, Philip K
    Sci Rep, 2016 08 16;6:31749.
    PMID: 27526944 DOI: 10.1038/srep31749
    Salivaricin B is a 25 amino acid polycyclic peptide belonging to the type AII lantibiotics and first shown to be produced by Streptococcus salivarius. In this study we describe the bactericidal mode of action of salivaricin B against susceptible Gram-positive bacteria. The killing action of salivaricin B required micro-molar concentrations of lantibiotic whereas the prototype lantibiotic nisin A was shown to be potent at nano-molar levels. Unlike nisin A, salivaricin B did not induce pore formation or dissipate the membrane potential in susceptible cells. This was established by measuring the fluorescence of the tryptophan residue at position 17 when salivaricin B interacted with bacterial membrane vesicles. The absence of a fluorescence blue shift indicates a failure of salivaricin B to penetrate the membranes. On the other hand, salivaricin B interfered with cell wall biosynthesis, as shown by the accumulation of the final soluble cell wall precursor UDP-MurNAc-pentapeptide which is the backbone of the bacterial peptidoglycan. Transmission electron microscopy of salivaricin B-treated cells showed a reduction in cell wall thickness together with signs of aberrant septum formation in the absence of visible changes to cytoplasmic membrane integrity.
    Matched MeSH terms: Gram-Positive Bacteria/ultrastructure
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links