PURPOSE: This study aimed to compare the kinetics of power output using FI and FR of an anaerobic performance (Wingate test) under 2, 3 and 4% state of hypohydrations.
METHOD: Thirty two collegiate cyclists (age = 22 ± 2 years; body weight = 71.45 ± 3.43 kg; height = 173.23 ± 0.04 cm) were matched using their baseline anaerobic peak power (APP) then randomly divided into 4 groups of EU (euhydrated), 2H, 3H and 4H respectively.
RESULTS: As expected the, FI, APP, anaerobic lower power (ALP) and rating of perceived exertion (RPE) did not show significant differences between and within the groups. However, the FR in 3H (0.018 ± 0.005 s(-1)) and 4H (0.019 ± 0.010 s(-1)) were significantly lower than EU (0.033 ± 0.012 s(-1)). Post-test FR also showed significant reduction in 3H and 4H compared to their pre-test values (p<0.05).
CONCLUSION: Despite the lack of changes in APP and RPE, subjects in 3H and 4H showed evidence of lower reduction of power output over time. The findings support earlier reports which showed no change in anaerobic performance under mild hypohydrations. The relatively lower FR suggests higher drive in maintaining power output under hypohydrations of 3 and 4% body weight.
METHODS: Participants (N.=27) with the mean age of 16.95±0.8 years, height of 165.6±6.1 cm and weight of 54.19±8.1 kg were matched into either modified exponential taper (N.=7), normal exponential taper (N.=7), or control (N.=7) groups using their initial VO2max values. Both experimental groups followed a 12-week progressive endurance training program and subsequently, a 2-week tapering phase. A simulated 20-km time trial performance along with VO2max, power output, heart rate and rating of perceived exertion were measured at baseline, pre and post-taper. One way ANOVA was used to analyze the difference between groups before the start of the intervention while mixed factorial ANOVA was used to analyze the difference between groups across measurement sessions. When homogeneity assumption was violated, the Greenhouse-Geisser Value was used for the corrected values of the degrees of freedom for the within subject factor the analysis.
RESULTS: Significant interactions between experimental groups and testing sessions were found in VO2max (F=6.67, df=4, P<0.05), power output (F=5.02, df=4, P<0.05), heart rate (F=10.87, df=2.51, P<0.05) rating of perceived exertion (F=13.04, df=4, P<0.05) and 20KM time trial (F=4.64, df=2.63, P<0.05). Post-hoc analysis revealed that both types of taper exhibited positive effects compared to the non-taper condition in the measured performance markers at post-taper while no different were found between the two taper groups.
CONCLUSIONS: It was concluded that both taper protocols successfully inducing physiological adaptations among the junior cyclists by reducing the volume and maintaining the intensity of training.
METHODS: Eight cyclists exercised at three submaximal intensities before completing a TTE100% at sea-level (SEA) and at 1657 m of altitude (ALT), with pre-exercise consumption of 1000 mg of POMx or a placebo (PLAC) in a randomized, double-blind, crossover design. Data were analysed using a three way (treatment x altitude x intensity) or two-way (treatment x altitude) repeated measures ANOVA with a Fisher's LSD post-hoc analysis. Significance was set at p ≤ 0.05. The effect size of significant interactions was calculated using Cohen's d.
RESULTS: TTE100% performance was reduced in ALT but was not influenced by POMx (p > 0.05). Plasma NO3- were 10.3 μmol greater with POMx vs. PLAC (95% CI, 0.8, 19.7,F1,7 = 7.83, p 0.05). Submaximal VO2 values were not affected by POMx (p ≥ 0.05).
CONCLUSIONS: The restoration of SEA VO2 values at ALT is likely driven by the high polyphenol content of POMx, which is proposed to improve nitric oxide bioavailability. Despite an increase in VO2, no change in exercise performance occurred and therefore this study does not support the use of POMx as an ergogenic supplement.
METHODS: Fourteen trained male cyclists (age: 32 ± 12 year; height: 178 ± 6 cm; mass: 76 ± 9 kg; [Formula: see text]: 59 ± 9 mL kg-1 min-1; body surface area: 1.93 ± 0.12 m2; peak power output: 393 ± 53 W) volunteered, and underwent 1 exercise bout in moderate heat (MOD: 34.9 ± 0.2 °C, 50.1 ± 1.1% relative humidity) and 1 in mild heat (MILD: 29.2 ± 0.2 °C, 69.4 ± 0.9% relative humidity) matched for vapor pressure (2.8 ± 0.1 kPa), with trials counterbalanced.
RESULTS: Despite a higher weighted mean skin temperature during MOD (36.3 ± 0.5 vs. 34.5 ± 0.6 °C, p
DESIGN: Randomised double-blind counterbalanced crossover.
METHODS: Eighteen recreationally active men (mean±SD; age: 24.7±4.8 years old; body-weight, BW: 67.1±6.1kg; height: 171.7±4.9cm) performed a cycling time-trial on an electromagnetically-braked cycle ergometer. Participants were instructed to complete the individualised total work in the shortest time possible, while ingesting either BCAAs (pre-exercise: 0.084gkg-1 BW; during exercise: 0.056gkg-1h-1) or a non-caloric placebo solution. Rating of perceived exertion, power, cadence and heart rate were recorded throughout, while maximal voluntary contraction, muscle voluntary activation level and electrically evoked torque using single and doublet stimulations were assessed at baseline, immediately post-exercise and 20-min post-exercise.
RESULTS: Supplementation with BCAA reduced (287.9±549.7s; p=0.04) time-to-completion and ratings of perceived exertion (p≤0.01), while concomitantly increasing heart rate (p=0.02). There were no between-group differences (BCAA vs placebo) in any of the neuromuscular parameters, but significant decreases (All p≤0.01) in maximal voluntary contraction, muscle voluntary activation level and electrically evoked torque (single and doublet stimulations) were recorded immediately following the trial, and these did not recover to pre-exercise values by the 20min recovery time-point.
CONCLUSIONS: Compared to a non-caloric placebo, acute BCAA supplementation significantly improved performance in cycling time-trial among recreationally active individuals without any notable changes in either central or peripheral factors. This improved performance with acute BCAA supplementation was associated with a reduced rating of perceived exertion.