Displaying all 11 publications

Abstract:
Sort:
  1. Roesnita B, Tay ST, Puthucheary SD, Sam IC
    Trans R Soc Trop Med Hyg, 2012 Feb;106(2):131-3.
    PMID: 22112687 DOI: 10.1016/j.trstmh.2011.10.007
    Routine use of selective media improves diagnosis of Burkholderia pseudomallei, but resources may be limited in endemic developing countries. To maximise yield in the relatively low-prevalence setting of Kuala Lumpur, Malaysia, B. pseudomallei selective agar and broth were compared with routine media for 154 respiratory specimens from patients with community-acquired disease. Selective media detected three additional culture-positive specimens and one additional melioidosis patient, at a consumables cost of US$75. Burkholderia pseudomallei was not isolated from 74 diabetic foot ulcer samples. Following careful local evaluation, focused use of selective media may be cost-effective.
    Matched MeSH terms: Burkholderia pseudomallei/growth & development
  2. Chenthamarakshan V, Kumutha MV, Vadivelu J, Puthucheary SD
    J Med Microbiol, 2001 Jan;50(1):55-61.
    PMID: 11192506 DOI: 10.1099/0022-1317-50-1-55
    The class and subclass distribution of antibody response to the culture filtrate antigen (CFA) of Burkholderia pseudomallei was examined in the sera of 45 septicaemic and 17 localised melioidosis cases and 40 cases clinically suspected of melioidosis and the results were compared with those from high-risk and healthy control groups. The geometric mean titre index (GMTI) values for all classes and subclasses of immunoglobulins examined were higher for sera from the proven and clinically suspected melioidosis cases than for the control groups. However, the highest response in the three patient groups was that of IgG with GMTIs ranging from 219.4 to 291.6 and the lowest was for IgM with GMTIs of 22.5, 24.3 and 28.7. The IgA response was intermediate with GMTIs ranging from 119.2 to 170. The GMTIs were highest for IgG in septicaemic and localised infections and for IgA and IgM in localised infections. As regards IgG subclass distribution, IgG1 and IgG2 were the predominant subclasses produced against the CFA in contrast to IgG3 and IgG4, which were produced in low amounts. None of the sera from the control groups had any significant titres of antibodies.
    Matched MeSH terms: Burkholderia pseudomallei/growth & development
  3. Vellasamy KM, Mariappan V, Shankar EM, Vadivelu J
    PLoS Negl Trop Dis, 2016 07;10(7):e0004730.
    PMID: 27367858 DOI: 10.1371/journal.pntd.0004730
    BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood.

    METHODS: We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS).

    RESULTS: We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages.

    CONCLUSION: Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections.

    Matched MeSH terms: Burkholderia pseudomallei/growth & development
  4. Vadivelu J, Vellasamy KM, Thimma J, Mariappan V, Kang WT, Choh LC, et al.
    PLoS Negl Trop Dis, 2017 01;11(1):e0005241.
    PMID: 28045926 DOI: 10.1371/journal.pntd.0005241
    BACKGROUND: During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure.

    METHODS: We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells.

    RESULTS: TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei.

    CONCLUSION: B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

    Matched MeSH terms: Burkholderia pseudomallei/growth & development
  5. Chieng S, Carreto L, Nathan S
    BMC Genomics, 2012;13:328.
    PMID: 22823543 DOI: 10.1186/1471-2164-13-328
    Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation.
    Matched MeSH terms: Burkholderia pseudomallei/growth & development
  6. Nathan SA, Qvist R, Puthucheary SD
    FEMS Immunol. Med. Microbiol., 2005 Feb 1;43(2):177-83.
    PMID: 15681148
    The oxidative response of Burkholderia pseudomallei and Escherichia coli infected macrophages from normal and melioidosis subjects was determined by measuring the production of nitric oxide which is one of the reactive nitrogen intermediates, and the activation state of these macrophages was determined by measuring the generation of 8-iso-PGF(2alpha), a bioactive product of free radical induced lipid peroxidation. Macrophages obtained from the melioidosis patients generated significantly lower levels of nitric oxide and 8-iso-PGF(2alpha) compared to macrophages obtained from the normal subjects (P<0.001). The reduced efficiency of the oxygen dependent microbicidal mechanism in macrophages of melioidosis patients may be one of the survival strategies developed by B. pseudomallei to remain viable intracellularly.
    Matched MeSH terms: Burkholderia pseudomallei/growth & development*
  7. Koh SF, Tay ST, Puthucheary SD
    Trop Biomed, 2013 Sep;30(3):428-33.
    PMID: 24189672 MyJurnal
    Burkholderia pseudomallei the causative agent of melioidosis, is being increasingly recognized as an important cause of morbidity and mortality in South East Asia. Biofilm formation of B. pseudomallei may be responsible for dormancy, latency and relapse of melioidosis. Based on the colonial morphology of the bacteria on B. pseudomallei selective agar medium, seven distinct morphotypes were identified. This study was conducted to assess the in vitro biofilm produced by B. pseudomallei and to investigate possible correlation between B. pseudomallei morphotypes with biofilm forming abilities of the isolates. Using a standard biofilm crystal violet staining assay, comparison was made between the biofilm forming ability of 76 isolates of B. pseudomallei and Burkholderia thailandensis ATCC 700388. Amongst the blood isolates, 30.2% were considered as high biofilm producers and 27.9% were low producers, 33.3% of the pus isolates were considered as high and 16% low biofilm producers. Most of the isolates were identified as morphotype group 1 which displayed a rough centre with irregular circumference on the agar medium. However, we did not find any correlation of B. pseudomallei morphotypes with biofilm forming abilities (p > 0.05). Additional studies are needed to identify internal and external factors which contribute to the high and low biofilm formation of B. pseudomallei.
    Matched MeSH terms: Burkholderia pseudomallei/growth & development
  8. Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Aziz SA
    Environ Monit Assess, 2018 Mar 22;190(4):241.
    PMID: 29569066 DOI: 10.1007/s10661-018-6613-7
    Burkholderia pseudomallei causes melioidosis, a life-threatening infection in both humans and animals. Water is an important reservoir of the bacteria and may serve as a source of environmental contamination leading to infection. B. pseudomallei has an unusual ability to survive in water for a long period. This paper investigates physicochemical properties of water associated with the presence of B. pseudomallei in water supply in small ruminant farms in Peninsular Malaysia. Physicochemical properties of water samples taken from small ruminant farms that included temperature, pH, dissolved oxygen (DO2), optical density (OD), and chemical oxygen demand (COD) were measured after which the samples were cultured for B. pseudomallei. Multivariable logistic regression model revealed that slightly acidic water pH and higher COD level were significantly associated with the likelihood of the B. pseudomallei presence in the water.
    Matched MeSH terms: Burkholderia pseudomallei/growth & development*
  9. See JX, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005702.
    PMID: 28820897 DOI: 10.1371/journal.pntd.0005702
    BACKGROUND: Melioidosis is a neglected tropical disease endemic across South East Asia and Northern Australia. The etiological agent, Burkholderia pseudomallei (B.pseudomallei), is a Gram-negative, rod-shaped, motile bacterium residing in the soil and muddy water across endemic regions of the tropical world. The bacterium is known to cause persistent infections by remaining latent within host cells for prolonged duration. Reactivation of the recrudescent disease often occurs in elders whose immunity wanes. Moreover, recurrence rates in melioidosis patients can be up to ~13% despite appropriate antibiotic therapy, suggestive of bacterial persistence and inefficacy of antibiotic regimens. The mechanisms behind bacterial persistence in the host remain unclear, and hence understanding host immunity during persistent B. pseudomallei infections may help designing potential immunotherapy.

    METHODOLOGY/PRINCIPAL FINDINGS: A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice.

    CONCLUSIONS/SIGNIFICANCE: The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host.

    Matched MeSH terms: Burkholderia pseudomallei/growth & development
  10. Chieng S, Mohamed R, Nathan S
    Microb Pathog, 2015 Feb;79:47-56.
    PMID: 25616255 DOI: 10.1016/j.micpath.2015.01.006
    Burkholderia pseudomallei, the causative agent of melioidosis, is able to survive extreme environments and utilizes various virulence factors for survival and pathogenicity. To compete and survive within these different ecological niches, B. pseudomallei has evolved specialized pathways, including the Type VI secretion systems (T6SSs), that have a role in pathogenesis as well as interbacterial interactions. We examined the expression profile of B. pseudomallei T6SS six gene clusters during infection of U937 macrophage cells. T6SS-5 was robustly transcribed while the other five clusters were not significantly regulated proposing the utility of T6SS-5 as a potential biomarker of exposure to B. pseudomallei. Transcription of T6SS regulators VirAG and BprB was also not significant during infection when compared to bacteria grown in culture. Guided by these findings, three highly expressed T6SS genes, tssJ-4, hcp1 and tssE-5, were expressed as recombinant proteins and screened against melioidosis patient sera by western analysis and ELISA. Only Hcp1 was reactive by both types of analysis. The recombinant Hcp1 protein was further evaluated against a cohort of melioidosis patients (n = 32) and non-melioidosis individuals (n = 20) sera and the data clearly indicates a higher sensitivity (93.7%) and specificity (100%) for Hcp1 compared to bacterial lysate. The detection of anti-Hcp1 antibodies in patients' sera indicating the presence of B. pseudomallei highlights the potential of Hcp1 to be further developed as a serodiagnostic marker for melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/growth & development
  11. Khosravi Y, Vellasamy KM, Mariappan V, Ng SL, Vadivelu J
    ScientificWorldJournal, 2014;2014:132971.
    PMID: 25379514 DOI: 10.1155/2014/132971
    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).
    Matched MeSH terms: Burkholderia pseudomallei/growth & development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links