Displaying all 3 publications

Abstract:
Sort:
  1. Bilad MR, Azizo AS, Wirzal MDH, Jia Jia L, Putra ZA, Nordin NAHM, et al.
    J Environ Manage, 2018 Oct 01;223:23-28.
    PMID: 29885561 DOI: 10.1016/j.jenvman.2018.06.007
    Microalgae technology, if managed properly, has promising roles in solving food-water-energy nexus. The Achilles' heel is, however, to lower the costs associated with cultivation and harvesting. As a favorable technique, application of membrane process is strongly limited by membrane fouling. This study evaluates performance of nylon 6,6 nanofiber membrane (NFM) to a conventional polyvinylidene fluoride phase inverted membrane (PVDF PIM) for filtration of Chlorella vulgaris. Results show that nylon 6,6 NFM is superhydrophilic, has higher size of pore opening (0.22 vs 0.18 μm) and higher surface pore density (23 vs 18 pores/μm2) leading to higher permeance (1018 vs 493 L/m2hbar) and better fouling resistant. Such advantages help to outperform the filterability of PVDF PIM by showing much higher steady-state permeance (286 vs 120 L/m2hbar), with comparable biomass retention. In addition, unlike for PVDF PIM, imposing longer relaxation cycles further enhances the performance of the NFM (i.e., 178 L/m2hbar for 0.5 min and 236 L/m2hbar for 5 min). Overall findings confirm the advantages of nylon 6,6 NFM over the PVDF PIM. Such advantages can help to reduce required membrane area and specific aeration demand by enabling higher flux and lowering aeration rate. Nevertheless, developments of nylon 6,6 NFM material with respect to its intrinsic properties, mechanical strength and operational conditions of the panel can still be explored to enhance its competitiveness as a promising fouling resistant membrane material for microalgae filtration.
    Matched MeSH terms: Caprolactam/analogs & derivatives*
  2. Jasni MJ, Sathishkumar P, Sornambikai S, Yusoff AR, Ameen F, Buang NA, et al.
    Bioprocess Biosyst Eng, 2017 Feb;40(2):191-200.
    PMID: 27757535 DOI: 10.1007/s00449-016-1686-6
    In this study, laccase was immobilized on nylon 6,6/Fe(3+) composite (NFC) nanofibrous membrane and used for the detoxification of 3,3'-dimethoxybenzidine (DMOB). The average size and tensile strength of the NFC membrane were found to be 60-80 nm (diameter) and 2.70 MPa, respectively. The FTIR results confirm that the amine (N-H) group of laccase was attached with Fe(3+) particles and the carbonyl (C=O) group of NFC membrane via hydrogen bonding. The half-life of the laccase-NFC membrane storage stability was increased from 6 to 11 weeks and the reusability was significantly extended up to 43 cycles against ABTS oxidation. Enhanced electro-oxidation of DMOB by laccase was observed at 0.33 V and the catalytic current was found to be 30 µA. The DMOB-treated mouse fibroblast 3T3-L1 preadipocytes showed maximum (97 %) cell inhibition at 75 µM L(-1) within 24 h. The cytotoxicity of DMOB was significantly decreased to 78 % after laccase treatment. This study suggests that laccase-NFC membrane might be a good candidate for emerging pollutant detoxification.
    Matched MeSH terms: Caprolactam/analogs & derivatives*
  3. Thanalechumi P, Mohd Yusoff AR, Yusop Z
    J Environ Sci Health B, 2019;54(4):294-302.
    PMID: 30729855 DOI: 10.1080/03601234.2018.1561057
    A newly developed electrochemical sensor for chlorothalonil based on nylon 6,6 film deposited onto screen printed electrode (SPE) with electrochemical modulation of pH at the electrode/solution interface was studied for the first time. Differential pulse cathodic stripping voltammetry (DPCSV) was used to carry out the electrochemical and analytical studies. Experimental parameters such as accumulation potential, initial potential, accumulation time and pH of Britton-Robinson buffer have been optimized. Chlorothalonil gave optimum analytical signal in a medium of 0.04 M Britton-Robinson buffer at pH 6.0. A well-defined reduction peak was observed, at Ep= -0.851 and -0.938 V vs. Ag/AgCl (3.0 M KCl) for both bare SPE and modified SPE, respectively. The peak currents of modified SPE were significantly increased as compared to bare SPE. At the modified SPE, a linear relationship between the peak current and chlorothalonil concentration was obtained in the range from 0.1 to 2.8 × 10-6 M with a detection limit of 1.53 × 10-8 M (S/N= 3). The practical applicability of the newly developed method has been demonstrated on analyses of real water samples. The newly developed sensor shows good reproducibility with RSD of 3.92%. The nylon 6,6 modified SPE showed itself as promising sensor with good selectivity for chlorothalonil determination.
    Matched MeSH terms: Caprolactam/analogs & derivatives
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links