In this study, laccase was immobilized on nylon 6,6/Fe(3+) composite (NFC) nanofibrous membrane and used for the detoxification of 3,3'-dimethoxybenzidine (DMOB). The average size and tensile strength of the NFC membrane were found to be 60-80 nm (diameter) and 2.70 MPa, respectively. The FTIR results confirm that the amine (N-H) group of laccase was attached with Fe(3+) particles and the carbonyl (C=O) group of NFC membrane via hydrogen bonding. The half-life of the laccase-NFC membrane storage stability was increased from 6 to 11 weeks and the reusability was significantly extended up to 43 cycles against ABTS oxidation. Enhanced electro-oxidation of DMOB by laccase was observed at 0.33 V and the catalytic current was found to be 30 µA. The DMOB-treated mouse fibroblast 3T3-L1 preadipocytes showed maximum (97 %) cell inhibition at 75 µM L(-1) within 24 h. The cytotoxicity of DMOB was significantly decreased to 78 % after laccase treatment. This study suggests that laccase-NFC membrane might be a good candidate for emerging pollutant detoxification.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.