The asymmetric polyethersulfone (PES-15 wt.%) mixed-matrix membranes were prepared by incorporation of carbon molecular sieve (CMS) with varying concentrations (1, 3, and 5 wt.%). Physicochemical characterization of synthesized membranes was carried out using field emission scanning electron microscope, atomic force microscopy, contact angle, thermogravimetric analysis, zeta potential analyzer, porosity, and mean pore sizes. Performance analysis of synthesized mixed-matrix membranes was carried out by varying the operating parameters such as pressure (2-10 bar), feed concentration (100-1,000 mg/L), and cations type (Na+ , Ca2+ , Mg2+ , and Sn2+ ). Effect of operating parameters and CMS concentration was investigated on pure water flux (PWF), permeate flux, and rejection of membranes. It was found that mixed-matrix membrane containing 15 wt.% PES with 1 wt.% CMS displayed the superior physicochemical characteristics in terms of hydrophilicity (37.9°), surface charge (-13.8 mV), mean pore diameter (6.04 nm), and thermal properties (Tg = 218.5°C), and overall performance. E5C1 membrane showed 1.5 times higher PWF (75.5 L m-2 hr-1 ) and incremented in rejection for all salts than the nascent membrane. PRACTITIONER POINTS: Carbon molecular sieve-embedded mixed-matrix membranes were synthesized by phase inversion method. The resultant membranes experienced improved hydrophilicity, roughness, surface charge, porosity, and mean pore diameter with 1 wt.% CMS loading. The pure water flux was improved from 55.77 to 75.05 L m-2 hr-1 when 1 wt.% CMS was added in pure PES. The observed rejection of a mixed-matrix membrane with 1 wt.% CMS was the maximum for all salts.
Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties. We show that, by immobilizing the dopant in the conductive scaffold, we can prevent its electric deterioration. We grew polyaniline (PANI) doped with phytic acid on the surface of a chitosan film. The strong chelation between phytic acid and chitosan led to a conductive patch with retained electroactivity, low surface resistivity (35.85 ± 9.40 kilohms per square), and oxidized form after 2 weeks of incubation in physiological medium. Ex vivo experiments revealed that the conductive nature of the patch has an immediate effect on the electrophysiology of the heart. Preliminary in vivo experiments showed that the conductive patch does not induce proarrhythmogenic activities in the heart. Our findings set the foundation for the design of electronically stable CP-based scaffolds. This provides a robust conductive system that could be used at the interface with electroresponsive tissue to better understand the interaction and effect of these materials on the electrophysiology of these tissues.
This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min(-1) flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m(-2) h(-1) bar(-1). The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.
Among wide range of membrane-based operations, membrane contactors, as they reify comparatively modern membrane-based mechanism are gaining quite an attention in both pilot and industrial scales. In recent literature, carbon capture is one of the most researched applications of membrane contactors. Membrane contactors have the potential to minimize the energy consumption and capital cost of traditional CO2 absorptions columns. In a membrane contactor, CO2 regeneration can take place below the solvent boiling point, resulting into lower consumption of energy. Various polymeric as well as ceramic membrane materials have been employed in gas liquid membrane contactors along with several solvents including amino acids, ammonia, amines etc. This review article provides detailed introduction of membrane contactors in terms of CO2 removal. It also discusses that the main challenge that is faced by membrane contactors is membrane pore wetting caused by solvent that in turn can reduce the mass transfer coefficient. Other potential challenges such as selection of suitable solvent and membrane pair as well as fouling are also discussed in this review and are followed by potential ways to reduce them. Furthermore, both membrane gas separation and membrane contactor technologies are analysed and compared in this study on the basis of their characteristics, CO2 separation performances and techno economical transvaluation. Consequently, this review provides an opportunity to thoroughly understand the working principle of membrane contactors along its comparison with membrane-based gas separation technology. It also provides a clear understanding of latest innovations in membrane contactor module designs as well as challenges encountered by membrane contactors along with possible solutions to overcome these challenges. Finally, semi commercial and commercial implementation of membrane contactors has been highlighted.
Pesticides are used in agriculture to protect crops from pathogens, insects, fungi and weeds, but the release of pesticides into surface/groundwater by agriculture runoff and rain has raised serious concerns not only for the environment but also for human health. This study aimed to investigate the impact of surface properties on the performance of seven distinct membrane types utilized in nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) processes in eliminating multiple pesticides from spiked water. Out of the membranes tested, two are self-fabricated RO membranes while the rest are commercially available membranes. Our results revealed that the self-fabricated RO membranes performed better than other commercial membranes (e.g., SW30XLE, NF270, Duracid and FO) in rejecting the targeted pesticides by achieving at least 99% rejections regardless of the size of pesticides and their log Kow value. Despite the marginally lower water flux exhibited by the self-fabricated membrane compared to the commercial BW30 membrane, its exceptional ability to reject both mono- and divalent salts renders it more apt for treating water sources containing not only pesticides but also various dissolved ions. The enhanced performance of the self-fabricated RO membrane is mainly attributed to the presence of a hydrophilic interlayer (between the polyamide layer and substrate) and the incorporation of hydrophilic nanosheets in tuning its surface characteristics. The findings of the work provide insight into the importance of membrane surface modification for the application of not only the desalination process but also for the removal of contaminants of emerging concern.
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Emerging contaminants (ECs) originated from different agricultural, biological, chemical, and pharmaceutical sectors have been detected in our water sources for many years. Several technologies are employed to minimise EC content in the aqueous phase, including solvent extraction processes, but there is not a solution commonly accepted yet. One of the studied alternatives is based on separation processes of emulsion liquid membrane (ELM) that benefit low solvent inventory and energy needs. However, a better understanding of the process and factors influencing the operating conditions and the emulsion stability of the extraction/stripping process is crucial to enhancing ELM's performance. This article aims to describe the applications of this technique for the EC removal and to comprehensively review the ELM properties and characteristics, phase compositions, and process parameters.
Biohydrogen as one of the most appealing energy vector for the future represents attractive avenue in alternative energy research. Recently, variety of biohydrogen production pathways has been suggested to improve the key features of the process. Nevertheless, researches are still needed to overcome remaining barriers to practical applications such as low yields and production rates. Considering practicality aspects, this review emphasized on anaerobic membrane bioreactors (AnMBRs) for biological hydrogen production. Recent advances and emerging issues associated with biohydrogen generation in AnMBR technology are critically discussed. Several techniques are highlighted that are aimed at overcoming these barriers. Moreover, environmental and economical potentials along with future research perspectives are addressed to drive biohydrogen technology towards practicality and economical-feasibility.
A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372kg COD/(m(3)day)) and cyclic time (12, 24, and 48h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O&G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44kg COD/(m(3)day), TDS of 78,000mg/L and reaction time (RT) of 40h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100mg/L and met the discharge limits.
Visible light driven C-doped mesoporous TiO2 (C-MTiO2) nanorods have been successfully synthesized through green, low cost, and facile approach by sol-gel bio-templating method using regenerated cellulose membrane (RCM) as nanoreactor. In this study, RCM was also responsible to provide in-situ carbon sources for resultant C-MTiO2 nanorods in acidified sol at low temperatures. The composition, crystallinity, surface area, morphological structure, and optical properties of C-MTiO2 nanorods, respectively, had been characterized using FTIR, XRD, N2 adsorption/desorption, TEM, UV-vis-NIR, and XPS spectroscopy. The results suggested that the growth of C-MTiO2 nanorods was promoted by the strong interaction between the hydroxyl groups of RCMs and titanium ion. Optical and XPS analysis confirmed that carbon presence in TiO2 nanorods were responsible for band-gap narrowing, which improved the visible light absorption capability. Photocatalytic activity measurements exhibited the capability of C-MTiO2 nanorods in degradation of methyl orange in aqueous solution, with 96.6% degradation percentage under visible light irradiation.
Novel alginate-fenugreek gum (FG) gel membrane coated hydroxypropylmethylcellulose (HPMC) based matrix tablets were developed for intragastric quetiapine fumarate (QF) delivery by combining floating and swelling mechanisms. The effects of polymer blend ratios [HPMC K4M:HPMC E15] and citric acid contents on time taken for 50% drug release (t50%, min) and drug release at 8h (Q8h, %) were studied to optimize the core tablets by 3(2) factorial design. The optimized tablets (F-O) exhibited t50% of 247.67±3.51min and Q8h of 71.11±0.32% with minimum errors in prediction. The optimized tablets were coated with Ca(+2) ions crosslinked alginate-FG gel membrane by diffusion-controlled interfacial complexation technique. The biopolymeric-coated optimized matrices exhibited superior buoyancy, preferred swelling characteristics and slower drug release rate. The drug release profiles of the QF-loaded uncoated and coated optimized matrices were best fitted in Korsmeyer-Peppas model with anomalous diffusion driven mechanism. The uncoated and coated tablets containing QF were also characterized for drug-excipients compatibility, thermal behaviour and surface morphology by FTIR, DSC and SEM analyses, respectively. Thus, the newly developed alginate-FG gel membrane coated HPMC matrices are appropriate for intragastric delivery of QF over a prolonged period of time with greater therapeutic benefits.
Currently, an extractive green palm oil-based emulsion liquid membrane (ELM) has been used for simultaneous extraction and enrichment of Reactive Red 3BS from simulated synthetic dye wastewater. The ELM consists of two main phases, which are organic liquid membrane (LM) and stripping solution. During the extraction process, the ELM was dispersed into the simulated synthetic dye wastewater containing the Reactive Red 3BS complexes. The organic LM contains tridodecylamine (TDA), Sorbitan Monooleate (Span 80) and palm oil as a carrier, surfactant and diluent, respectively. The sodium bicarbonate (NaHCO3) was used as stripping solution for the enrichment process. Several important parameters that affected the simultaneous extraction and enrichment of Reactive Red 3BS, such as carrier and stripping agent concentrations, extraction time and treat ratio, were investigated. The results showed that almost 90% of Reactive Red 3BS ions were successfully extracted with 10 times enrichment in the stripping phase at the optimum conditions of 0.2 M TDA, 0.1 M NaHCO3, 5 min of extraction time and 1:5 of treat ratio. Hence, it can be concluded that palm oil possesses a high potential as green diluent in future technology, especially in ELM process for the removal and recovery of Reactive Red 3BS from synthetic dye wastewater.
The incorporation of a spacer among membranes has a major influence on fluid dynamics and performance metrics. Spacers create feed channels and operate as turbulence promoters to increase mixing and reduce concentration/temperature polarization effects. However, spacer geometry remains unoptimized, and studies continue to investigate a wide range of commercial and custom-made spacer designs. The in-depth discussion of the present systematic review seeks to discover the influence of Reynolds number or solution flowrate on flow hydrodynamics throughout a spacer-filled channel. A fast-flowing solution sweeping one membrane's surface first, then the neighboring membrane's surface produces good mixing action, which does not happen commonly at laminar solution flowrates. A sufficient flowrate can suppress the polarization layer, which may normally require the utilization of a simple feed channel rather than complex spacer configurations. When a recirculation eddy occurs, it disrupts the continuous flow and effectively curves the linear fluid courses. The higher the flowrate, the better the membrane performance, the higher the critical flux (or recovery rate), and the lower the inherent limitations of spacer design, spacer shadow effect, poor channel hydrodynamics, and high concentration polarization. In fact, critical flow achieves an acceptable balance between improving flow dynamics and reducing the related trade-offs, such as pressure losses and the occurrence of concentration polarization throughout the cell. If the necessary technical flowrate is not used, the real concentration potential for transport is relatively limited at low velocities than would be predicted based on bulk concentrations. Electrodialysis stack therefore may suffer from the dissociation of water molecules. Next studies should consider that applying a higher flowrate results in greater process efficiency, increased mass transfer potential at the membrane interface, and reduced stack thermal and electrical resistance, where pressure drop should always be indicated as a consequence of the spacer and circumstances used, rather than a problem.
The effects of different hydraulic retention time (HRT) on (RS)-MCPP utilisation was investigated by decreasing the feed flow rate in an anaerobic membrane bioreactor (AnMBR). Results showed an average COD removal efficiency of 91.4%, 96.9% and 94.4% when the reactor was operated at HRT 3, 7 and 17 d, respectively. However, when the HRT was reduced to 1d, the COD removal efficiency declined to just only 60%, confirming the AnMBR is stable to a large transient hydraulic shock loads. The (RS)-MCPP removal efficiency fluctuated from 6% to 39% at HRT 3 d, however when it was increased to 7 and 17 d, the removal efficiency increased to an average of 60% and 74.5%. In addition, (RS)-MCPP specific utilisation rates (SUR) were dependent on the HRT and gradually improved from 18 to 43 μg mg VSS(-1) d(-1) as flow rate increased.
There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented.
The amount of lipase from Mucor miehei adsorption on ultrafiltration polysulfone hollow fiber membrane chips has been determined using different lipase concentrations at three different temperatures, namely 30, 35, and 40 degrees C. It was experimentally shown that adsorption of lipase increases with temperature. The results were used to evaluate the constants found in the Langmuir adsorption isotherm model coupled with the Van't Hoff's relationship. A temperature dependence correlation for the amount of adsorbed lipase activity, alip,ads, and that present in the supernatant solution, alip,free was determined. The effect of varying the concentration on a cross-linking agent, namely, glutaraldehyde, to the membrane chips was also tested. It was found that, under the same operating conditions, the amount of lipase adsorbed on polysulfone membranes was increased dramatically after pre-treating the membrane with 1% Glutaraldehyde. However, increasing the concentration of the cross-linking agent has a low effect on the amount of lipase adsorbed.
κ-Carrageenan films derived from Euchema cottoni containing different types and concentrations of emulsifier were developed. Film formation without the addition of emulsifier was used as a control. The physical, mechanical, optical and microstructural properties of these films were determined. Different types of emulsifiers (Tween 20, Tween 40 and Tween 80) exerted significant effects (P≤0.05) on the thickness, moisture content and opacity of the films. Additionally, Tween 20 and Tween 40 with concentrations from 0.1 to 0.5% (v/v) significantly (P≤0.05) improved the tensile strength of the films, ranging from 7.35 to 13.83MPa. The water vapor permeability of the carrageenan films was significantly (P≤0.05) affected by both factors. Increasing the emulsifier concentration also caused an increment in the number of lipid droplets contributing to a smooth surface. Therefore, this study suggests that different types and concentrations of emulsifiers play essential roles in determining the physical properties of carrageenan films.
This study explains the modeling of synthesized membranes using the Donnan Steric Pore model (DSPM) based on the Extended Nernst Planck Equation (ENP). Conventionally, structural parameters required to predict the performance of the membranes were determined through tedious experimentation, which in this study are found using a new MATLAB technique. A MATLAB program is used to determine the unknown structural parameters such as effective charge density (Xd), effective pore radius (rp), and effective membrane thickness to porosity ratio (Δx/Ak) by using the single solute rejection and permeation data. It was found that the model predicted the rejection of studied membranes accurately, with the E5C1 membrane exceeding the others (E5, E5C5) for rejection of single and divalent salt's aqueous solutions. The rejection of 100 ppm aqueous solution of NaCl for E5C1 was around 60%, whereas, for an aqueous solution of 100 ppm, CaCl2 rejection reached up to 80% at 10 bar feed pressure. The trend of salt rejection for all three membranes was found to be in the following order: E5C1 > E5C5 > E5, confirming that their structural parameters-controlled ion transport in these membranes. The structural parameters, such as effective pore radius, effective membrane thickness to porosity ratio, and effective charge density for the best performing membrane, i.e., E5C1, were determined to be 0.5 nm, 16 μm, and -6.04 mol/m3,respectively. Finally, it can be asserted that this method can be used to predict the real performance of membranes by significantly reducing the number of experiments previously required for the predictive modeling of nanofiltration-type membranes.
A packaging material that is environment-friendly with excellent mechanical and physicochemical properties, biodegradable and ultraviolet (UV) protection and thermal stability was prepared to reduce plastic waste. Six different concentrations of Pennisetum purpureum/Napier cellulose nanowhiskers (NWCs) (i.e. 0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) were used to reinforce polylactic acid (PLA) by a solvent casting method. The resulting bionanocomposite film samples were characterised in terms of their morphology, chemical structure, crystallinity, thermal degradation and stability, light transmittance, water absorption, biodegradability, and physical and mechanical properties. Field-emission scanning electron microscopy showed the excellent dispersion of NWC in the PLA matrix occurred with NWC concentrations of 0.5-1.5 wt%. All the bionanocomposite film samples exhibited good thermal stability at approximately 343-359 °C. The highest water absorption was 1.94%. The lowest transparency at λ800 was 16.16% for the PLA/3.0% NWC bionanocomposite film, which also has the lowest UVA and UVB transmittance of 7.49% and 4.02%, respectively, making it suitable for packaging materials. The PLA/1.0% NWC film exhibited the highest crystallinity of 50.09% and high tensile strength and tensile modulus of 21.22 MPa and 11.35 MPa, respectively.
An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CH3I). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6° water contact angle), water uptake (113%) and a high pure water permeability of ∼370 L m-2 h-1 bar-1. Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (∼97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.