DESIGN: A meta-analysis was conducted to determine the potential impact of blood flow restriction on patients with knee injuries. PubMed, EBSCO, and Web of Science databases were searched for eligible studies from January 2000 until January 2020. The mean differences of the data were analyzed using Revman 5.3 software with a 95% confidence interval.
RESULTS: Nine studies fulfilled the inclusion criteria. These studies involved 179 patients who received L-BFR, 96 patients who underwent high-load resistance training, and another 94 patients who underwent low-load resistance training. The analysis of pooled data showed that patients in both the L-BFR (standardized mean difference, 0.83 [0.53, 1.14], P < 0.01) and high-load resistance training (standardized mean difference, -0.09 [-0.43, 0.24], P = 0.58) groups experienced an increase in muscle strength after the training. In addition, pain score was significantly reduced in the L-BFR group compared with the other two groups (standardized mean difference, -0.61 [-1.19, -0.03], P = 0.04).
CONCLUSIONS: Muscle strength increased after L-BFR and high-load resistance training compared with low-load resistance training. Furthermore, pain score was significantly reduced after L-BFR. Hence, L-BFR is a potential intervention to be applied in rehabilitation of knee injuries.
PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.
MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.
RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.
CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.
METHODS: Three different cams (triangle, ellipse, and circle) and three different posts (straight, convex, concave) geometries were considered in this study and were analysed using kinematic analyses. Femoral rollback did not occur until reaching 50° of knee flexion. Beyond this angle, two of the nine combinations demonstrate poor knee flexion and were eliminated from the study.
RESULTS: The combination of circle cam with concave post, straight post and convex post showed 15.6, 15.9 and 16.1 mm posterior translation of the femur, respectively. The use of ellipse cam with convex post and straight post demonstrated a 15.3 and 14.9 mm femoral rollback, whilst the combination of triangle cam with convex post and straight post showed 16.1 and 15.8 mm femoral rollback, respectively.
CONCLUSION: The present study demonstrates that the use of circle cam and convex post created the best femoral rollback effect which in turn produces the highest amount of knee flexion. The findings of the study suggest that if the design is applied for knee implants, superior knee flexion may be possible for future patients.
LEVEL OF EVIDENCE: IV.