For the first time, a highly efficient Cr(NO3)3 catalysis system was proposed for optimization the yield and crystallinity of nanocellulose end product. A five-level three-factor central composite design coupled with response surface methodology was employed to elucidate parameters interactions between three design factors, namely reaction temperature (x1), reaction time (x2) and concentration of Cr(NO3)3 (x3) over a broad range of process conditions and determine the effect on crystallinity index and product yield. The developed models predicted the maximum nanocellulose yield of 87% at optimum process conditions of 70.6°C, 1.48h, and 0.48M Cr(NO3)3. At these conditions, the obtained nanocellulose presented high crystallinity index (75.3%), spider-web-like interconnected network morphology with the average width of 31.2±14.3nm. In addition, the yielded nanocellulose rendered a higher thermal stability than that of original cellulosic source and expected to be widely used as reinforcement agent in bio-nanocomposites materials.
The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.
NiS-SiO2 and Cr2S3-TiO2 synthesized by Ultrasound-Microwave method was tested for the photo-degradation of methyl red as azo dye under ultraviolet (UV) light. The structure and morphology of the synthesized materials were examined through scanning electron microscopy, X-ray diffraction and photoelectron spectroscopy, energy-dispersive spectroscopy, dynamic light scattering and the band gap energy differences were determined through diffuse reflectance spectroscopy (DRS). The crystallite size and band gap values of SiO2, TiO2, NiS-SiO2 and Cr2S3-TiO2-1 were obtained from XRD and UV-vis DRS analysis and found insignificant 44.22, 54.11, and 57.11 nm, and 8.9, 3.2, 3.0, 2.7 eV, respectively. The NiS-SiO2 and Cr2S3-TiO2 nanocomposites exhibited good stability and catalytic performance in the azo dye degradation; the composite provides a complete degradation after 50 min under UV irradiation. The effects of different quencher compounds on the Methyl red dye degradation were also investigated. The result for this experiment shows the system without the quencher was highly degradation of Methyl red. The antibacterial influence of the SiO2, TiO2, NiS-SiO2 and Cr2S3-TiO2-1 were studied versus two species bacteria. The antifungal performance of this nanoparticle was analyzed versus two species fungi as the C. albicans and P. funiculosum. Biological data demonstrated that the prepared catalyst has great bactericidal and fungicidal properties.
Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant.
Cr2O3/g-C3N4 photocatalyst was successfully synthesized via the one-pot thermal polycondensation method by mixing different ratios of CrCl3.H2O and thiourea. Thiourea was used as the precursor for building g-C3N4. All samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and electrochemical experiment (photocurrent and EIS). The photocatalytic performance of the composites was studied by the photodegradation process of tetracycline hydrochloride (TC-HCl) and reactive orange 16 (RO16) under visible light irradiation. The results showed that the 1%Cr2O3/g-C3N4 was the most effective photocatalyst with 94.9% (30 min) and 80.6% (90 min) for degradation of RO16 and TC-HCl, respectively, when compared with the other ratios. Additionally, from the reactive species trapping test, superoxide radical was the major reactive species in this reaction. Finally, this material could be reused with great efficiency with 5 and 7 times for TC-HCl and RO16, respectively. The synthesized composites manifest the great potential for the wastewater treatment industry.