Displaying all 4 publications

Abstract:
Sort:
  1. Abu Bakar N, Lau BYC, González-Aravena M, Smykla J, Krzewicka B, Karsani SA, et al.
    Microb Ecol, 2023 Dec 07;87(1):11.
    PMID: 38060022 DOI: 10.1007/s00248-023-02311-w
    In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six Pseudogymnoascus spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six Pseudogymnoascus spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of Pseudogymnoascus spp. However, one Antarctic isolate, sp3, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (sp3) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus Pseudogymnoascus.
    Matched MeSH terms: Cold-Shock Response*
  2. Zhu C, Yang H, Zhu W, Jiang Q, Dong Z, Wang L
    Int J Mol Sci, 2024 Dec 13;25(24).
    PMID: 39769137 DOI: 10.3390/ijms252413372
    Cold stress during overwintering is considered a bottleneck problem limiting the development of the red tilapia (Oreochromis spp.) industry, and the regulation mechanism is currently not well understood. In this study, the fish (initial weight: 72.71 ± 1.32 g) were divided into the cold stress group (cold) and the control (normal) group. In the control group, the water temperature was maintained at 20 °C, which is basically consistent with the overwintering water temperature in greenhouses of local areas. In the cold group, the water temperature decreased from 20 °C to 8 °C by 2 °C per day during the experiment. At the end of the experiment, the levels of fish serum urea nitrogen, glucose, norepinephrine, alkaline phosphatase, total bilirubin, and total cholesterol in the cold group changed significantly compared with that in the control group (P < 0.05). Then transcriptome sequencing and LC-MS metabolome of brain tissue were further employed to obtain the mRNA and metabolite datasets. We found that the FoxO signaling pathway and ABC transporters played an important role by transcriptome-metabolome association analysis. In the FoxO signaling pathway, the differentially expressed genes were related to cell cycle regulation, apoptosis and immune-regulation, and oxidative stress resistance and DNA repair. In the ABC transporters pathway, the ATP-binding cassette (ABC) subfamily abca, abcb, and abcc gene expression levels, and the deoxycytidine, L-lysine, L-glutamic acid, L-threonine, ornithine, and uridine metabolite contents changed. Our results suggested that the cold stress may promote apoptosis through regulation of the FoxO signaling pathway. The ABC transporters may respond to cold stress by regulating amino acid metabolism. The results provided a comprehensive understanding of fish cold stress during overwintering, which will facilitate the breeding of new cold-resistant varieties of red tilapia in the future.
    Matched MeSH terms: Cold-Shock Response*
  3. Zhang S, Cao K, Wei Y, Jiang S, Ye J, Xu F, et al.
    Plant Physiol Biochem, 2023 Sep;202:107972.
    PMID: 37611487 DOI: 10.1016/j.plaphy.2023.107972
    Brassinosteroids (BRs) are phytohormones that play numerous roles in a plant's response to environmental stress. While BES/BZR transcription factors are essential components in BR signaling, their role in regulating postharvest fruit responses to cold stress is largely unknown. In this study, the application of 24-epibrassinolide (EBR) to peaches alleviated chilling injury (CI) during postharvest cold storage. We further characterized a key BES/BZR gene, PpBZR1, which regulates peach cold resistance. Transient expression PpBZR1 in peaches showed that PpBZR1 inhibits PpVIN2 expression and VIN activity, resulting in an elevated level of sucrose, which protects fruit from CI. Arabidopsis thaliana expressing PpBZR1 that had a high germination and seedling survival rate at low temperatures, which may be due to higher level of sucrose and lower oxidative damage. Mechanistically, we confirmed that PpBZR1 directly binds to the PpVIN2 promoter and functions as a negative regulator for sucrose metabolism. In addition, PpCBF1/5/6 were induced by EBR treatment and AtCBFs were upregulated in PpBZR1 transgenic Arabidopsis thaliana. Combined with previous findings, we hypothesize that PpBZR1 regulates PpVIN2 and may also be mediated by CBF. In conclusion, PpBZR1 expression is induced by EBR treatment during cold storage, which futher inhibite sucrose degradation gene PpVIN2 transcription via direct binding its promoter and indirectly regulating PpVIN2, resulting in slower sucrose degradation and higher chilling tolerance of peach.
    Matched MeSH terms: Cold-Shock Response
  4. Nadarajah K, Abdul Hamid NW, Abdul Rahman NSN
    Int J Mol Sci, 2021 May 25;22(11).
    PMID: 34070465 DOI: 10.3390/ijms22115591
    Environmental or abiotic stresses are a common threat that remains a constant and common challenge to all plants. These threats whether singular or in combination can have devastating effects on plants. As a semiaquatic plant, rice succumbs to the same threats. Here we systematically look into the involvement of salicylic acid (SA) in the regulation of abiotic stress in rice. Studies have shown that the level of endogenous salicylic acid (SA) is high in rice compared to any other plant species. The reason behind this elevated level and the contribution of this molecule towards abiotic stress management and other underlying mechanisms remains poorly understood in rice. In this review we will address various abiotic stresses that affect the biochemistry and physiology of rice and the role played by SA in its regulation. Further, this review will elucidate the potential mechanisms that control SA-mediated stress tolerance in rice, leading to future prospects and direction for investigation.
    Matched MeSH terms: Cold-Shock Response/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links