Affiliations 

  • 1 Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
  • 2 Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
Int J Mol Sci, 2024 Dec 13;25(24).
PMID: 39769137 DOI: 10.3390/ijms252413372

Abstract

Cold stress during overwintering is considered a bottleneck problem limiting the development of the red tilapia (Oreochromis spp.) industry, and the regulation mechanism is currently not well understood. In this study, the fish (initial weight: 72.71 ± 1.32 g) were divided into the cold stress group (cold) and the control (normal) group. In the control group, the water temperature was maintained at 20 °C, which is basically consistent with the overwintering water temperature in greenhouses of local areas. In the cold group, the water temperature decreased from 20 °C to 8 °C by 2 °C per day during the experiment. At the end of the experiment, the levels of fish serum urea nitrogen, glucose, norepinephrine, alkaline phosphatase, total bilirubin, and total cholesterol in the cold group changed significantly compared with that in the control group (P < 0.05). Then transcriptome sequencing and LC-MS metabolome of brain tissue were further employed to obtain the mRNA and metabolite datasets. We found that the FoxO signaling pathway and ABC transporters played an important role by transcriptome-metabolome association analysis. In the FoxO signaling pathway, the differentially expressed genes were related to cell cycle regulation, apoptosis and immune-regulation, and oxidative stress resistance and DNA repair. In the ABC transporters pathway, the ATP-binding cassette (ABC) subfamily abca, abcb, and abcc gene expression levels, and the deoxycytidine, L-lysine, L-glutamic acid, L-threonine, ornithine, and uridine metabolite contents changed. Our results suggested that the cold stress may promote apoptosis through regulation of the FoxO signaling pathway. The ABC transporters may respond to cold stress by regulating amino acid metabolism. The results provided a comprehensive understanding of fish cold stress during overwintering, which will facilitate the breeding of new cold-resistant varieties of red tilapia in the future.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.