Displaying all 11 publications

Abstract:
Sort:
  1. Chua LS, Lee SY, Abdullah N, Sarmidi MR
    Fitoterapia, 2012 Dec;83(8):1322-35.
    PMID: 22521793 DOI: 10.1016/j.fitote.2012.04.002
    Labisia pumila is a traditional herb widely used as post-partum medication for centuries. Recently, extensive researches have been carried out on the phytochemical identification, biological and toxicological studies for the herb. Phytochemicals found in the herbal extract showed high antioxidant properties, which were essential for various pharmacological activities. The significant findings are anti-estrogenic deficiency and -immunodeficiency diseases. Another finding that has considerable impact on natural product research is the contribution of L. pumila in promoting skin collagen synthesis. The performance of the herb as anti-aging agent due to natural aging process and accelerated by UV radiation was reviewed critically.
    Matched MeSH terms: Collagen/biosynthesis*
  2. Imrigha NAA, Bidin N, Lau PS, Musa N, Zakaria N, Krishnan G
    J Biophotonics, 2017 Oct;10(10):1287-1291.
    PMID: 28464516 DOI: 10.1002/jbio.201600295
    Q-switched Nd: YAG laser is the most effective laser for tattoo removal. Photobiomodulation (PBM) therapy is an alternative method applied to accelerate the wound healing. This paper investigated the effects of PBM therapy using 808 nm diode laser on tattooed skin after laser tattoo removal. Forty-five rats were selected and tattooed with black ink on their dorsal, and then distributed into three groups. G0 was received non-laser irradiation. G1 was treated by laser tattoo removal using 1064 nm with energy density of 3.4 J/cm2 without PBM therapy, while G2 was treated daily with PBM therapy using 808 nm diode laser of 5 J/cm2 after a single session of laser tattoo removal. The effects of tattoo removal and healing progress of the wound were analyzed using histological studies. Findings showed 808 nm laser promotes the healing process through enhancing epithelialization and collagen deposition. Moreover, PBM therapy stimulated immune cells to improve phagocytosis process for removing the tattoo ink fragments effectively. The PBM therapy treated group was capable of improving the healing process and increasing the quality of skin following the laser tattoo removal. It was also found that stimulation of cellular function by PBM therapy increased tattoo clearance efficiency.
    Matched MeSH terms: Collagen/biosynthesis
  3. Lau PS, Bidin N, Krishnan G, Nassir Z, Bahktiar H
    J Cosmet Laser Ther, 2015 Apr;17(2):86-9.
    PMID: 25260140 DOI: 10.3109/14764172.2014.968587
    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing.
    Matched MeSH terms: Collagen/biosynthesis*
  4. Hashim P
    Pak J Pharm Sci, 2014 Mar;27(2):233-7.
    PMID: 24577907
    Centella asiatica (Linn.) Urban is well known in promoting wound healing and provides significant benefits in skin care and therapeutic products formulation. Glycolic acid and vitamins also play a role in the enhancement of collagen and fibronectin synthesis. Here, we evaluate the specific effect of Centella asiatica (CA), vitamins, glycolic acid and their mixture preparations to stimulate collagen and fibronectin synthesis in cultured human fibroblast cells. The fibroblast cells are incubated with CA, glycolic acid, vitamins and their mixture preparations for 48 h. The cell lysates were analyzed for protein content and collagen synthesis by direct binding enzyme immunoassay. The fibronectin of the cultured supernatant was measured by sandwich enzyme immunoassay. The results showed that CA, glycolic acid, vitamins A, E and C significantly stimulate collagen and fibronectin synthesis in the fibroblast. Addition of glycolic acid and vitamins to CA further increased the levels of collagen and fibronectin synthesis to 8.55 and 23.75 μg/100 μg, respectively. CA, glycolic acid, vitamins A, E, and C, and their mixtures demonstrated stimulatory effect on both extra-cellular matrix synthesis of collagen and fibronectin in in vitro studies on human foreskin fibroblasts, which is beneficial to skin care and therapeutic products formulation.
    Matched MeSH terms: Collagen/biosynthesis*
  5. Lee SY, Kamarul T
    Int J Biol Macromol, 2014 Mar;64:115-22.
    PMID: 24325858 DOI: 10.1016/j.ijbiomac.2013.11.039
    In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30 kGy and 50 kGy). The co-polymers were then lyophilized to form macroporous three-dimensional (3-D) matrix. Scaffold morphology, porosity, swelling properties, biocompatibility, expression of glycosaminoglycan (GAG) and type II collagen following the seeding of primary chondrocytes were studied up to 28 days. The results demonstrate that irradiation of e-beam at 50 kGy increased scaffold porosity and pore sizes subsequently enhanced cell attachment and proliferation. Scanning electron microscopy and transmission electron microscopy revealed extensive interconnected microstructure of PVA-PEG-NOCC, demonstrated cellular activities on the scaffolds and their ability to maintain chondrocyte phenotype. In addition, the produced PVA-PEG-NOCC scaffolds showed superior swelling properties, and increased GAG and type II collagen secreted by the seeded chondrocytes. In conclusion, the results suggest that by adding NOCC and irradiation cross-linking at 50 kGy, the physical and biological properties of PVA-PEG blend can be further enhanced thereby making PVA-PEG-NOCC a potential scaffold for chondrocytes.
    Matched MeSH terms: Collagen/biosynthesis
  6. Makpol S, Jam FA, Khor SC, Ismail Z, Mohd Yusof YA, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:298574.
    PMID: 24396567 DOI: 10.1155/2013/298574
    Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging.
    Matched MeSH terms: Collagen/biosynthesis*
  7. Pung YF, Chilian WM, Bennett MR, Figg N, Kamarulzaman MH
    Am J Physiol Heart Circ Physiol, 2017 Mar 01;312(3):H541-H545.
    PMID: 27986661 DOI: 10.1152/ajpheart.00653.2016
    Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia.NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN.
    Matched MeSH terms: Collagen/biosynthesis
  8. Lai HY, Lim YY, Kim KH
    BMC Complement Altern Med, 2011 Aug 12;11:62.
    PMID: 21835039 DOI: 10.1186/1472-6882-11-62
    BACKGROUND: Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally to treat wounds, boils, blisters or abscesses and sores, stomach pain and urinary bladder complaints. The aim of the study was to validate the ethnotherapeutic claim and to evaluate the effects of B. orientale water extract on wound healing activity.

    METHODS: Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control) and 10% povidone-iodine (positive control) respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test.

    RESULTS: Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group.

    CONCLUSIONS: The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process.

    Matched MeSH terms: Collagen/biosynthesis
  9. Rezvanian M, Ng SF, Alavi T, Ahmad W
    Int J Biol Macromol, 2021 Feb 28;171:308-319.
    PMID: 33421467 DOI: 10.1016/j.ijbiomac.2020.12.221
    Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p collagen deposition. Moreover, results also showed an improved rate of collagen synthesis and angiogenesis in the group treated with the hydrogel film loaded with Simvastatin. Thus, the present study demonstrated that developed film holds great potential for the acceleration of diabetic wound healing by its pro-angiogenic effect, faster re-epithelialization and increased collagen deposition.
    Matched MeSH terms: Collagen/biosynthesis
  10. Shalan NA, Mustapha NM, Mohamed S
    Nutrition, 2017 Jan;33:42-51.
    PMID: 27908549 DOI: 10.1016/j.nut.2016.08.006
    OBJECTIVE: Black tea and Nonileaf are among the dietary compounds that can benefit patients with bone resorption disorders. Their bone regeneration effects and their mechanisms were studied in estrogen-deficient rats.

    METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).

    RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.

    CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.

    Matched MeSH terms: Collagen/biosynthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links