METHODS: The PCR technique was established based on published information and validated using blood sample of laboratory animals of which their whole gene sequences are available in GenBank. PCR was next performed to compile gene sequences of different species of wild rodents. The primers used were complementary to the conserved region of the cytb gene of vertebrate's mtDNA. A total of 100 blood samples, both from laboratory animals and wild rodents were collected and analyzed. The obtained unknown sequences were compared with those in the GenBank database using BLAST program to identify the vertebrate animal species.
RESULTS: Gene sequences of 11 species of wild animals caught in 9 localities of Peninsular Malaysia were compiled using the established PCR. The animals involved were Rattus (rattus) tanezumi, Rattus tiomanicus, Leopoldamys sabanus, Tupaia glis, Tupaia minor, Niviventor cremoriventor, Rhinosciurus laticaudatus, Callosciurus caniseps, Sundamys muelleri, Rattus rajah and Maxomys whiteheadi. The BLAST results confirmed the host with exact or nearly exact matches (>89% identity). Ten new gene sequences have been deposited in GenBank database since September 2010.
CONCLUSIONS: This study indicates that the PCR direct sequencing system using universal primer sets for vertebrate cytb gene is a promising technique for blood meal identification.
METHODS: The Filipino β-deletion was identified using gap-polymerase chain reaction (PCR) in the parents of transfusion dependent β-thalassaemia patients who were homozygous for the Filipino β-deletion in the indigenous population of Sabah, Malaysia. Hb subtypes were quantified on the BioRad Variant II Hb analyser. Concurrent α-thalassaemia was identified by multiplex gap-PCR for deletions and amplification refractory mutation system (ARMS)-PCR for non-deletional mutations.
RESULTS: The mean HbA2 level for Filipino β-thalassaemia trait was 5.9 ± 0.47 and with coinheritance of α-thalassaemia was 6.3 ± 0.44 (-α heterozygous) and 6.7 ± 0.36 (-α homozygous). The HbA2 levels were all >4% in keeping with the findings of classical β-thalassaemia trait and significantly higher than levels seen in non-deletional forms of β-thalassaemia.
CONCLUSION: The HbA2 level measured on the BioRad Variant II Hb analyser was lower than the level in the first description of the Filipino β-thalassaemia. β-thalassaemia trait with coinheritance of α-thalassaemia (-α) is associated with significantly higher HbA2 level.