METHODS: Sixteen patients who were diagnosed with POR scheduled to undergo their second cycle of Intracytoplasmic sperm injection (ICSI)/embryo transfer cycle were enrolled. All enrolled patients had earlier undergone their first ICSI/embryo transfer cycle at least four months prior to this study. All subjects were given DHEA supplementation of 25mg three times daily for at least three months prior to their second ICSI/embryo transfer cycle. Statistical analysis of various ovarian response and ICSI outcomes parameter were compared pre and post DHEA.
RESULTS: Sixteen women with the mean age of 35 years were enrolled in the study. The comparative analysis of results showed a significant increase in the number of good quality of embryos obtained (p<0.05). After the treatment with DHEA, there was an improvement in the number of oocytes retrieved, Metaphase II (MII) oocyte (mature) oocytes obtained, fertilised and transferrable embryos and the pregnancy rate. There was no significant effect of DHEA treatment on the number of days of stimulation and cumulative dose of gonadotrophins used.
CONCLUSION: Our results is able to show that DHEA supplementation may help to enhance IVF-ICSI outcomes in women with POR especially in those age 35 years and below.
METHODS: A systematic literature search was performed in Scopus, Embase, Web of Science, and PubMed databases up to February 2020 for RCTs that investigated the effect of DHEA supplementation on testosterone levels. The estimated effect of the data was calculated using the weighted mean difference (WMD). Subgroup analysis was performed to identify the source of heterogeneity among studies.
RESULTS: Overall results from 42 publications (comprising 55 arms) demonstrated that testosterone level was significantly increased after DHEA administration (WMD: 28.02 ng/dl, 95% CI: 21.44-34.60, p = 0.00). Subgroup analyses revealed that DHEA increased testosterone level in all subgroups, but the magnitude of increment was higher in females compared to men (WMD: 30.98 ng/dl vs. 21.36 ng/dl); DHEA dosage of ˃50 mg/d compared to ≤50 mg/d (WMD: 57.96 ng/dl vs. 19.43 ng/dl); intervention duration of ≤12 weeks compared to ˃12 weeks (WMD: 44.64 ng/dl vs. 19 ng/dl); healthy participants compared to postmenopausal women, pregnant women, non-healthy participants and androgen-deficient patients (WMD: 52.17 ng/dl vs. 25.04 ng/dl, 16.44 ng/dl and 16.47 ng/dl); and participants below 60 years old compared to above 60 years old (WMD: 31.42 ng/dl vs. 23.93 ng/dl).
CONCLUSION: DHEA supplementation is effective for increasing testosterone levels, although the magnitude varies among different subgroups. More study needed on pregnant women and miscarriage.
METHODS: Electronic databases (Scopus, PubMed/Medline, Web of Science, Embase and Google Scholar) were searched for relevant literature published up to February 2020.
RESULTS: Twenty-four qualified trials were included in this meta-analysis. It was found that serum IGF-1 levels were significantly increased in the DHEA group compared to the control (weighted mean differences (WMD): 16.36 ng/ml, 95% CI: 8.99, 23.74; p = .000). Subgroup analysis revealed that a statistically significant increase in serum IGF-1 levels was found only in women (WMD: 23.30 ng/ml, 95% CI: 13.75, 32.87); in participants who supplemented 50 mg/d DHEA (WMD: 15.75 ng/ml, 95% CI: 7.61, 23.89); in participants undergoing DHEA intervention for >12 weeks (WMD: 17.2 ng/ml, 95% CI: 8.02, 26.22); in participants without an underlying comorbidity (WMD: 19.11 ng/ml, 95% CI: 10.69, 27.53); and in participants over the age of 60 years (WMD: 19.79 ng/ml, 95% CI: 9.86, 29.72).
CONCLUSION: DHEA supplementation may increase serum IGF-I levels especially in women and older subjects. However, further studies are warranted before DHEA can be recommended for clinical use.
METHODS AND RESULTS: A systematic review and dose-response meta-analysis of randomized controlled trials (RCTs) was performed employing in Scopus, PubMed/Medline, Web of Science, Embase and Google Scholar, then including relevant articles that addressed the effects of DHEA supplementation on the lipid profile, up to February 2020. Combined findings were generated from 23 eligible articles. Hence, total cholesterol (TC) (weighted mean difference (WMD): -3.5 mg/dl, 95% confidence interval (CI): -8.5 to 1.6)), low-density lipoprotein-cholesterol (LDL-C) (WMD: 0.34 mg/dl, 95% CI: -3 to 3.7) and triglycerides (TG) levels (WMD: -2.85 mg/dl, 95% CI: -9.3 to 3.6) did not alter in DHEA group compared to the control, but HDL-C levels significantly reduced in DHEA group (WMD: -3.1 mg/dl, 95% CI: -4.9 to -1.3). In addition, a significant reduction in HDL-C values was observed in studies comprising women (WMD: -5.1 mg/dl, 95% CI: -7.2 to -3) but not in males (WMD: 0.13 mg/dl, 95% CI: -1.4 to 1.7).
CONCLUSIONS: Overall, supplementation with DHEA did not change circulating values of TC, LDL-C and TG, whereas it may decrease HDL-C levels. Further long-term RCTs are required to investigate the effects of DHEA particularly on major adverse cardiac events.