Displaying all 9 publications

Abstract:
Sort:
  1. Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, et al.
    Lancet, 2014 Oct 11;384(9951):1358-65.
    PMID: 25018116 DOI: 10.1016/S0140-6736(14)61060-6
    An estimated 100 million people have symptomatic dengue infection every year. This is the first report of a phase 3 vaccine efficacy trial of a candidate dengue vaccine. We aimed to assess the efficacy of the CYD dengue vaccine against symptomatic, virologically confirmed dengue in children.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*
  2. Lam SK
    Expert Rev Vaccines, 2013 Sep;12(9):995-1010.
    PMID: 24053394 DOI: 10.1586/14760584.2013.824712
    Dengue is a major public health concern worldwide, with the number of infections increasing globally. The illness imposes the greatest economic and human burden on developing countries that have limited resources to deal with the scale of the problem. No cure for dengue exists; treatment is limited to rehydration therapy, and with vector control strategies proving to be relatively ineffective, a vaccine is an urgent priority. Despite the numerous challenges encountered in the development of a dengue vaccine, several vaccine candidates have shown promise in clinical development and it is believed that a vaccination program would be at least as cost-effective as current vector control programs. The lead candidate vaccine is a tetravalent, live attenuated, recombinant vaccine, which is currently in Phase III clinical trials. Vaccine introduction is a complex process that requires consideration and is discussed here. This review discusses the epidemiology, burden and pathogenesis of dengue, as well as the vaccine candidates currently in clinical development.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*
  3. Lam SK, Burke D, Capeding MR, Chong CK, Coudeville L, Farrar J, et al.
    Vaccine, 2011 Nov 28;29(51):9417-22.
    PMID: 21864627 DOI: 10.1016/j.vaccine.2011.08.047
    Infection with dengue virus is a major public health problem in the Asia-Pacific region and throughout tropical and sub-tropical regions of the world. Vaccination represents a major opportunity to control dengue and several candidate vaccines are in development. Experts in dengue and in vaccine introduction gathered for a two day meeting during which they examined the challenges inherent to the introduction of a dengue vaccine into the national immunisation programmes of countries of the Asia-Pacific. The aim was to develop a series of recommendations to reduce the delay between vaccine licensure and vaccine introduction. Major recommendations arising from the meeting included: ascertaining and publicising the full burden and cost of dengue; changing the perception of dengue in non-endemic countries to help generate global support for dengue vaccination; ensuring high quality active surveillance systems and diagnostics; and identifying sustainable sources of funding, both to support vaccine introduction and to maintain the vaccination programme. The attendees at the meeting were in agreement that with the introduction of an effective vaccine, dengue is a disease that could be controlled, and that in order to ensure a vaccine is introduced as rapidly as possible, there is a need to start preparing now.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*
  4. Zeng W, Halasa-Rappel YA, Baurin N, Coudeville L, Shepard DS
    Vaccine, 2018 01 08;36(3):413-420.
    PMID: 29229427 DOI: 10.1016/j.vaccine.2017.11.064
    Following publication of results from two phase-3 clinical trials in 10 countries or territories, endemic countries began licensing the first dengue vaccine in 2015. Using a published mathematical model, we evaluated the cost-effectiveness of dengue vaccination in populations similar to those at the trial sites in those same Latin American and Asian countries. Our main scenarios (30-year horizon, 80% coverage) entailed 3-dose routine vaccinations costing US$20/dose beginning at age 9, potentially supplemented by catch-up programs of 4- or 8-year cohorts. We obtained illness costs per case, dengue mortality, vaccine wastage, and vaccine administration costs from the literature. We estimated that routine vaccination would reduce yearly direct and indirect illness cost per capita by 22% (from US$10.51 to US$8.17) in the Latin American countries and by 23% (from US$5.78 to US$4.44) in the Asian countries. Using a health system perspective, the incremental cost-effectiveness ratio (ICER) averaged US$4,216/disability-adjusted life year (DALY) averted in the five Latin American countries (range: US$666/DALY in Puerto Rico to US$5,865/DALY in Mexico). In the five Asian countries, the ICER averaged US$3,751/DALY (range: US$1,935/DALY in Malaysia to US$5,101/DALY in the Philippines). From a health system perspective, the vaccine proved to be highly cost effective (ICER under one times the per capita GDP) in seven countries and cost effective (ICER 1-3 times the per capita GDP) in the remaining three countries. From a societal perspective, routine vaccination proved cost-saving in three countries. Including catch-up campaigns gave similar ICERs. Thus, this vaccine could have a favorable economic value in sites similar to those in the trials.
    Matched MeSH terms: Dengue Vaccines/administration & dosage
  5. Shafie AA, Yeo HY, Coudeville L, Steinberg L, Gill BS, Jahis R, et al.
    Pharmacoeconomics, 2017 May;35(5):575-589.
    PMID: 28205150 DOI: 10.1007/s40273-017-0487-3
    BACKGROUND: Dengue disease poses a great economic burden in Malaysia.

    METHODS: This study evaluated the cost effectiveness and impact of dengue vaccination in Malaysia from both provider and societal perspectives using a dynamic transmission mathematical model. The model incorporated sensitivity analyses, Malaysia-specific data, evidence from recent phase III studies and pooled efficacy and long-term safety data to refine the estimates from previous published studies. Unit costs were valued in $US, year 2013 values.

    RESULTS: Six vaccination programmes employing a three-dose schedule were identified as the most likely programmes to be implemented. In all programmes, vaccination produced positive benefits expressed as reductions in dengue cases, dengue-related deaths, life-years lost, disability-adjusted life-years and dengue treatment costs. Instead of incremental cost-effectiveness ratios (ICERs), we evaluated the cost effectiveness of the programmes by calculating the threshold prices for a highly cost-effective strategy [ICER <1 × gross domestic product (GDP) per capita] and a cost-effective strategy (ICER between 1 and 3 × GDP per capita). We found that vaccination may be cost effective up to a price of $US32.39 for programme 6 (highly cost effective up to $US14.15) and up to a price of $US100.59 for programme 1 (highly cost effective up to $US47.96) from the provider perspective. The cost-effectiveness analysis is sensitive to under-reporting, vaccine protection duration and model time horizon.

    CONCLUSION: Routine vaccination for a population aged 13 years with a catch-up cohort aged 14-30 years in targeted hotspot areas appears to be the best-value strategy among those investigated. Dengue vaccination is a potentially good investment if the purchaser can negotiate a price at or below the cost-effective threshold price.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*
  6. Fitzpatrick C, Haines A, Bangert M, Farlow A, Hemingway J, Velayudhan R
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005785.
    PMID: 28806786 DOI: 10.1371/journal.pntd.0005785
    INTRODUCTION: Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control.

    METHODS: We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine.

    RESULTS: Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine.

    DISCUSSION: Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*
  7. Coudeville L, Baurin N, L'Azou M, Guy B
    Vaccine, 2016 12 07;34(50):6426-6435.
    PMID: 27601343 DOI: 10.1016/j.vaccine.2016.08.050
    BACKGROUND: A tetravalent dengue vaccine demonstrated its protective efficacy in two phase III efficacy studies. Results from these studies were used to derive vaccination impact in the five Asian (Indonesia, Malaysia, Philippines, Thailand, Vietnam) and the five Latin American countries (Brazil, Colombia, Honduras, Mexico and Puerto Rico) participating in these trials.

    METHODS: Vaccination impact was investigated with an age-structured, host-vector, serotype-specific compartmental model. Parameters related to vaccine efficacy and levels of dengue transmission were estimated using data collected during the phase III efficacy studies. Several vaccination programs, including routine vaccination at different ages with and without large catch-up campaigns, were investigated.

    RESULTS: All vaccination programs explored translated into significant reductions in dengue cases at the population level over the first 10years following vaccine introduction and beyond. The most efficient age for vaccination varied according to transmission intensity and 9years was close to the most efficient age across all settings. The combination of routine vaccination and large catch-up campaigns was found to enable a rapid reduction of dengue burden after vaccine introduction.

    CONCLUSION: Our analysis suggests that dengue vaccination can significantly reduce the public health impact of dengue in countries where the disease is endemic.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*
  8. Cohen C, Moreira ED, Nañez H, Nachiappan JP, Arvinder-Singh HS, Huoi C, et al.
    Vaccine, 2019 03 22;37(13):1868-1875.
    PMID: 30826144 DOI: 10.1016/j.vaccine.2019.01.087
    BACKGROUND: The background incidence of viscerotropic- (VLD) and neurotropic-like disease (NLD) unrelated to immunization in dengue-endemic countries is currently unknown.

    METHODS: This retrospective population-based analysis estimated crude and standardized incidences of VLD and NLD in twelve hospitals in Brazil (n = 3), Mexico (n = 3), and Malaysia (n = 6) over a 1-year period before the introduction of the tetravalent dengue vaccine. Catchment areas were estimated using publicly available population census information and administrative data. The denominator population for incidence rates was calculated, and sensitivity analyses assessed the impact of important assumptions.

    RESULTS: Total cases adjudicated as definite VLD were 5, 57, and 56 in Brazil, Mexico, and Malaysia, respectively. Total cases adjudicated as definite NLD were 103, 29, and 26 in Brazil, Mexico, and Malaysia, respectively. Crude incidence rates of cases adjudicated as definite VLD in Brazil, Mexico, and Malaysia were 1.17, 2.60, and 1.48 per 100,000 person-years, respectively. Crude incidence rates of cases adjudicated as definite NLD in Brazil, Mexico, and Malaysia were 4.45, 1.32, and 0.69 per 100,000 person-years, respectively.

    CONCLUSIONS: Background incidence estimates of VLD and NLD obtained in Mexico, Brazil, and Malaysia could provide context for cases occurring after the introduction of the tetravalent dengue vaccine.

    Matched MeSH terms: Dengue Vaccines/administration & dosage
  9. Hassan J, Toh TH, Sivapunniam SK, Hasim R, Ghazali NF, Sulaiman S, et al.
    Pediatr Infect Dis J, 2021 08 01;40(8):774-781.
    PMID: 34250977 DOI: 10.1097/INF.0000000000003164
    BACKGROUND: Incorporating dengue vaccination within existing vaccination programs could help improve dengue vaccine coverage. We assessed the immunogenicity and safety of a quadrivalent human papillomavirus (HPV) vaccine administered concomitantly or sequentially with a tetravalent dengue vaccine (CYD-TDV) in healthy children 9-13 years of age in Malaysia.

    METHODS: In this phase IIIb, open-label, multicenter study (NCT02993757), participants were randomized 1:1 to receive 3 CYD-TDV doses 6 months apart and 2 doses of quadrivalent HPV vaccine concomitantly with, or 1 month before (sequentially), the first 2 CYD-TDV doses. Only baseline dengue-seropositive participants received the 3 doses. Antibody levels were measured at baseline and 28 days after each injection using an enzyme-linked immunosorbent assay for HPV-6, -9, -16 and -18, and the 50% plaque reduction neutralization test for the 4 dengue serotypes; immunogenicity results are presented for baseline dengue-seropositive participants. Safety was assessed throughout the study for all participants.

    RESULTS: At baseline, 197 of 528 (37.3%) randomized participants were dengue-seropositive [n = 109 (concomitant group) and n = 88 (sequential group)]. After the last HPV vaccine dose, antibody titers for HPV among baseline dengue-seropositive participants were similar between treatment groups, with between-group titer ratios close to 1 for HPV-6 and 0.8 for HPV-11, -16, and -18. After CYD-TDV dose 3, dengue antibody titers were similar between treatment groups for all serotypes [between-group ratios ranged from 0.783 (serotype 2) to 1.07 (serotype 4)]. No safety concerns were identified.

    CONCLUSIONS: The immunogenicity and safety profiles of CYD-TDV and quadrivalent HPV vaccines were unaffected when administered concomitantly or sequentially in dengue-seropositive children.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links