Displaying all 18 publications

  1. Yong HS
    Comp. Biochem. Physiol., B, 1984;78(2):321-3.
    PMID: 6236032
    Seven natural populations of Dacus dorsalis were analysed for phosphoglucomutase by means of horizontal starch-gel electrophoresis. The electrophoretic phenotypes were governed by four codominant Pgm alleles. The commonest allele in all the seven population samples was PgmB which encoded an electrophoretic band with intermediate mobility. The distributions of PGM phenotype were in accordance with Hardy-Weinberg expectations. There was geographic variation in the distribution of Pgm alleles.
    Matched MeSH terms: Diptera/genetics*
  2. Low VL, Srisuka W, Saeung A, Tan TK, Ya'cob Z, Yeong YS, et al.
    J Med Entomol, 2020 09 07;57(5):1675-1678.
    PMID: 32333022 DOI: 10.1093/jme/tjaa081
    Previous studies suggested the presence of species complex in the so-called Simulium asakoae Takaoka & Davies (Diptera: Simuliidae) in Thailand due to its high morphological variability and genetic divergence. To investigate whether the true S. asakoae is present in Thailand, we performed a detailed morphological identification of S. asakoae and compared its DNA barcodes with the morphospecies S. asakoae from Myanmar and the typical S. asakoae from Malaysia. Phylogenetic analysis revealed the Thai materials analyzed in this study were indeed genetically similar with those from Myanmar and Malaysia, though genetic distances 0-2.27% were observed. We tentatively regard this divergence as intraspecific variation, and the automatic barcode gap discovery analysis further supports them as a single species.
    Matched MeSH terms: Diptera/genetics
  3. Tan SH, Rizman-Idid M, Mohd-Aris E, Kurahashi H, Mohamed Z
    Forensic Sci Int, 2010 Jun 15;199(1-3):43-9.
    PMID: 20392577 DOI: 10.1016/j.forsciint.2010.02.034
    Insect larvae and adult insects found on human corpses provide important clues for the estimation of the postmortem interval (PMI). Among all necrophagous insects, flesh flies (Diptera: Sarcophagidae) are considered as carrion flies of forensic importance. DNA variations of 17 Malaysian, two Indonesian and one Japanese flesh fly species are analysed using the mitochondrial COI and COII. These two DNA regions were useful for identifying most species experimented. However, characterisation of the species was not sufficiently made in the case of Sarcophaga javanica. Seventeen Malaysian species of forensic importance were successfully clustered into distinct clades and grouped into the six species groups: peregrina, albiceps, dux, pattoni, princeps and ruficornis. These groups correspond with generic or subgeneric taxa of the subfamily Sarcophaginae: Boettcherisca, Parasarcophaga, Liosarcophaga, Sarcorohdendorfia-Lioproctia, Harpagophalla-Seniorwhitea and Liopygia. The genetic variations found in COI and COII can be applied not only to identify the species of forensic importance, but also to understand the taxonomic positions, generic or subgeneric status, of the sarcophagine species.
    Matched MeSH terms: Diptera/genetics*
  4. Wright TF, Johns PM, Walters JR, Lerner AP, Swallow JG, Wilkinson GS
    Genet. Res., 2004 Aug;84(1):27-40.
    PMID: 15663256
    Microsatellite primers are often developed in one species and used to assess neutral variability in related species. Such analyses may be confounded by ascertainment bias (i.e. a decline in amplification success and allelic variability with increasing genetic distance from the source of the microsatellites). In addition, other factors, such as the size of the microsatellite, whether it consists of perfect or interrupted tandem repeats, and whether it is autosomal or X-linked, can affect variation. To test the relative importance of these factors on microsatellite variation, we examine patterns of amplification and allelic diversity in 52 microsatellite loci amplified from five individuals in each of six populations of Cyrtodiopsis stalk-eyed flies that range from 2.2 % to 11.2% mitochondrial DNA sequence divergence from the population used for microsatellite development. We find that amplification success and most measures of allelic diversity declined with genetic distance from the source population, in some cases an order of magnitude faster than in birds or mammals. The median and range of the repeat array length did not decline with genetic distance. In addition, for loci on the X chromosome, we find evidence of lower observed heterozygosity compared with loci on autosomes. The differences in variability between X-linked and autosomal loci are not adequately explained by differences in effective population sizes of the chromosomes. We suggest, instead, that periodic selection events associated with X-chromosome meiotic drive, which is present in many of these populations, reduces X-linked variation.
    Matched MeSH terms: Diptera/genetics*
  5. Yong HS
    Comp. Biochem. Physiol., B, 1990;97(1):119-21.
    PMID: 2147641
    1. Population samples of Bactrocera albistrigata from Peninsular Malaysia were analyzed for 12 to 14 gene-enzyme systems comprising 15-18 loci. 2. Three loci, aMDH, PGD and PGM, were polymorphic. 3. Anodal malate dehydrogenase and phosphogluconate dehydrogenase were represented by two alleles each, while phosphoglucomutase was represented by three alleles. 4. Phosphoglucomutase had a higher heterozygosity than anodal malate dehydrogenase and phosphogluconate dehydrogenase. 5. B. albistrigata was characterized by low genetic variability, as measured by the proportion of polymorphic loci and heterozygosity.
    Matched MeSH terms: Diptera/genetics
  6. Yong HS, Dhaliwal SS, Cheong WH, Chiagng GL
    Comp. Biochem. Physiol., B, 1982;73(2):265-7.
    PMID: 7172625
    1. Three natural populations and a laboratory strain of Aedes albopictus were analysed for glucose phosphate isomerase by means of horizontal starch-gel electrophoresis. 2. The electrophoretic phenotypes were governed by five codominant Gpi alleles. 3. The commonest allele in all the four population samples was GpiC which encoded an electrophoretic band with intermediate mobility. 4. The distributions of GPI phenotypes were in accordance with Hardy-Weinberg expectations. 5. The four population samples could be differentiated by the presence of a unique Gpi allele or the absence of a particular Gpi allele.
    Matched MeSH terms: Diptera/genetics*
  7. Sutou M, Kato T, Ito M
    Mol Ecol Resour, 2011 Nov;11(6):992-1001.
    PMID: 21693000 DOI: 10.1111/j.1755-0998.2011.03040.x
    Long columns of migrating larval sciarid armyworms were discovered in central and northern Japan, specifically Kanagawa, Gunma, Miyagi and Akita prefectures, as well as Hokkaido. This is the first examination of armyworms in East Asia. In Europe, armyworms have been identified as Sciara militaris, belonging to the family Sciaridae (sciarid flies or black fungus gnats), by rearing them to adulthood. In Japan, we were unable to obtain live samples for rearing; therefore, DNA barcodes were obtained from the samples of armyworms collected in the Gunma and Miyagi prefectures. The DNA barcodes were compared with those obtained from the following samples: pupae of S. militaris from UK, adults of Sciara kitakamiensis, Sciara humeralis, Sciara hemerobioides, Sciara thoracica, Sciara helvola and Sciara melanostyla from Japan, and adults of one undescribed Sciara species from Malaysia. Neighbour-joining, maximum parsimony, and maximum likelihood analyses revealed that the armyworms discovered in Japan are S. kitakamiensis. Although adults of this species have been recorded in several locations in Japan, this is the first report of migrating larval armyworms. DNA barcodes were effectively used to link different life stages of this species. The average intraspecific and interspecific pairwise genetic distances of the genus Sciara were 0.3% and 12.6%, respectively. The present study illustrates that DNA barcodes are an effective means of identifying sciarid flies in Japan.
    Matched MeSH terms: Diptera/genetics*
  8. Heo CC, Rahimi R, Mengual X, M Isa MS, Zainal S, Khofar PN, et al.
    J Forensic Sci, 2020 Jan;65(1):276-282.
    PMID: 31305956 DOI: 10.1111/1556-4029.14128
    A body of an unknown adult female was found within a shallow burial ground in Malaysia whereas the skull was exposed and visible on the ground. During autopsy examination, nine insect larvae were recovered from the interior of the human skull and subsequently preserved in 70% ethanol. The larvae were greyish in appearance, each with a posterior elongated breathing tube. A week after the autopsy, more larvae were collected at the burial site, and some of them were reared into adults. Adult specimens and larvae from the skull and from the burial site were sequenced to obtain DNA barcodes. Results showed all adult flies reared from the burial site, as well as the larvae collected from the skull were identified as Eristalinus arvorum (Fabricius, 1787) (Diptera: Syrphidae). Here, we report the colonization of E. arvorum larvae on a human corpse for the first time.
    Matched MeSH terms: Diptera/genetics*
  9. Wardhana AH, Hall MJ, Mahamdallie SS, Muharsini S, Cameron MM, Ready PD
    Int J Parasitol, 2012 Jul;42(8):729-38.
    PMID: 22664061 DOI: 10.1016/j.ijpara.2012.04.017
    Phylogenetic, genealogical and population relationships of Chrysomya bezziana, the Old World screwworm fly (OWSF), were inferred from DNA sequences of mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and nuclear white eye colour (white), using sequences of Chrysomya megacephala and Chrysomya rufifacies as outgroups. Cyt b (717bp, 754 specimens), EF-1α (361bp, 256 specimens) and white (577bp, 242 specimens) were analysed from up to two African and nine Asian countries, including 10 Indonesian islands. We show that OWSF occurs as distinctive African and Asian lineages based on cyt b and white, and that there is a marked differentiation between Sumatran and Javan populations in Indonesia, supported by the genealogy and analysis of molecular variance of cyt b alone. Four cyt b sub-lineages are recognised in Asia: only 2.1 occurs on the Asian mainland, from Yemen to Peninsular Malaysia; only 2.2, 2.3 and 2.4 occur in central Indonesia; 2.4 predominates on New Guinea; and 2.1 co-occurs with others only on Sumatra in western Indonesia. This phylogeography and the genetic distances between cyt b haplotypes indicate pre-historic, natural dispersal of OWSF eastwards into Indonesia and other Malesian islands, followed by vicariant evolution in New Guinea and central Indonesia. OWSF is absent from Australia, where there is surveillance for importation or natural invasion. Judged by cyt b haplotype markers, there is currently little spread of OWSF across sea barriers, despite frequent shipments of Australian livestock through Indonesian seas to the Middle East Gulf region. These findings will inform plans for integrated pest management, which could be applied progressively, for example starting in East Nusa Tenggara (central Indonesia) where OWSF has regional cyt b markers, and progressing westwards to Java where any invasion from Sumatra is unlikely. Cyt b markers would help identify the source of any re-emergence in treated areas.
    Matched MeSH terms: Diptera/genetics
  10. Kavitha R, Tan TC, Lee HL, Nazni WA, Sofian AM
    Trop Biomed, 2013 Jun;30(2):211-9.
    PMID: 23959486 MyJurnal
    DNA identification of blow fly species can be a very useful tool in forensic entomology. One of the potential benefits that mitochondrial DNA (mtDNA) has offered in the field of forensic entomology is species determination. Conventional identification methods have limitations for sibling and closely related species of blow fly and stage and quality of the specimen used. This could be overcome by DNA-based identification methods using mitochondrial DNA which does not demand intact or undamaged specimens. Mitochondrial DNA is usually isolated from whole blow fly and legs. Alternate sources for mitochondrial DNA isolation namely, egg, larva, puparium and empty puparium were explored in this study. The sequence of DNA obtained for each sample for every life cycle stage was 100% identical for a particular species, indicating that the egg, 1st instar, 2nd instar, 3rd instar, pupa, empty puparium and adult from the same species and obtained from same generation will exhibit similar DNA sequences. The present study also highlighted the usefulness of collecting all life cycle stages of blow fly during crime scene investigation with proper preservation and subsequent molecular analysis. Molecular identification provides a strong basis for species identification and will prove an invaluable contribution to forensic entomology as an investigative tool in Malaysia.
    Matched MeSH terms: Diptera/genetics*
  11. Finnegan SR, Mondani M, Fowler K, Pomiankowski A
    J Evol Biol, 2021 05;34(5):736-745.
    PMID: 33559198 DOI: 10.1111/jeb.13770
    Meiotic drive systems are associated with low-frequency chromosomal inversions. These are expected to accumulate deleterious mutations due to reduced recombination and low effective population size. We test this prediction using the 'sex-ratio' (SR) meiotic drive system of the Malaysian stalk-eyed fly Teleopsis dalmanni. SR is associated with a large inversion (or inversions) on the X chromosome. In particular, we study eyespan in males carrying the SR chromosome, as this trait is a highly exaggerated, sexually dimorphic trait, known to have heightened condition-dependent expression. Larvae were raised in low and high larval food stress environments. SR males showed reduced eyespan under the low and high stress treatments, but there was no evidence of a condition-dependent decrease in eyespan under high stress. Similar but more complex patterns were observed for female eyespan, with evidence of additivity under low stress and heterosis under high stress. These results do not support the hypothesis that reduced sexual ornament size in meiotic drive males is due to a condition-dependent response to the putative increase in mutation load. Instead, reduced eyespan likely reflects compensatory resource allocation to different traits in response to drive-mediated destruction of sperm.
    Matched MeSH terms: Diptera/genetics*
  12. Olival KJ, Dick CW, Simmons NB, Morales JC, Melnick DJ, Dittmar K, et al.
    Parasit Vectors, 2013 Aug 08;6:231.
    PMID: 23924629 DOI: 10.1186/1756-3305-6-231
    BACKGROUND: Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date.

    METHODS: We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities.

    RESULTS: All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure.

    CONCLUSIONS: The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation.

    Matched MeSH terms: Diptera/genetics
  13. Rovie-Ryan JJ, Zainuddin ZZ, Marni W, Ahmad AH, Ambu LN, Payne J
    Asian Pac J Trop Biomed, 2013 Feb;3(2):95-9.
    PMID: 23593586 DOI: 10.1016/S2221-1691(13)60031-3
    To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly.
    Matched MeSH terms: Diptera/genetics
  14. Zhang KJ, Liu L, Rong X, Zhang GH, Liu H, Liu YH
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4314-4315.
    PMID: 26462416
    We sequenced and annotated the complete mitochondrial genome (mitogenome) of Bactrocera diaphora (Diptera: Tephtitidae), which is an economically important pest in the southwest area of China, India, Sri Lanka, Vietnam and Malaysia. This mitogenome is 15 890 bp in length with an A + T content of 74.103%, and contains 37 typical animal mitochondrial genes that are arranged in the same order as that of the inferred ancestral insects. All protein-coding genes (PCGs) start with a typical ATN codon, except cox1 that begins with TCG. Ten PCGs stop with termination codon TAA or TAG, whereas cox1, nad1 and nad5 have single T-- as the incomplete stop codon. All of the transfer RNA genes present the typical clover leaf secondary structure except trnS1 (AGN) with a looping D-arm. The A + T-rich region is located between rrnS and trnI with a length of 946 bp, and contains a 20 bp poly-T stretch and 22 bp poly-A stretch. Except the control region, the longest intergenic spacer is located between trnR and trnN that is 94 bp long with an excessive high A + T content (95.74%) and a microsatellite-like region (TA)13.
    Matched MeSH terms: Diptera/genetics*
  15. Hall MJ, Edge W, Testa JM, Adams ZJ, Ready PD
    Med. Vet. Entomol., 2001 Dec;15(4):393-402.
    PMID: 11776458
    A morphological and molecular analysis was undertaken with the objective of identifying markers for geographical populations of Old World screwworm flies, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae). The morphological analysis involved 192 adult flies from 14 countries, and the molecular analysis involved 45 larvae or adults from 14 populations in 11 countries. Principal components and cluster analysis of 10 morphological characters indicated that flies from Papua New Guinea (PNG) were a distinct group and most similar to flies from nearby Asian islands (Java, Sabah). There was poor resolution of other geographical regions, but some support for clustering of flies from Africa or India. Cladistic analysis of mitochondrial DNA sequences gave strong support for recognizing two races of Old World screwworm, one from sub-Saharan Africa and the other from the Gulf region and Asia. This latter race could be further divided into two lineages, i.e. one from mainland Asia (from Iraq to the Malay Peninsula) and the other from two islands of PNG.
    Matched MeSH terms: Diptera/genetics
  16. Kavitha R, Tan TC, Lee HL, Nazni WA, Sofian-Azirun M
    Trop Biomed, 2013 Mar;30(1):119-24.
    PMID: 23665717 MyJurnal
    Estimation of post-mortem interval (PMI) is crucial for time of death determination. The advent of DNA-based identification techniques forensic entomology saw the beginning of a proliferation of molecular studies into forensically important Calliphoridae (Diptera). The use of DNA to characterise morphologically indistinguishable immature calliphorids was recognised as a valuable molecular tool with enormous practical utility. The local entomofauna in most cases is important for the examination of entomological evidences. The survey of the local entomofauna has become a fundamental first step in forensic entomological studies, because different geographical distributions, seasonal and environmental factors may influence the decomposition process and the occurrence of different insect species on corpses. In this study, calliphorids were collected from 13 human corpses recovered from indoors, outdoors and aquatic conditions during the post-mortem examination by pathologists from the government hospitals in Malaysia. Only two species, Chrysomya megacephala and Chrysomya rufifacies were recovered from human corpses. DNA sequencing was performed to study the mitochondrial encoded COI gene and to evaluate the suitability of the 1300 base pairs of COI fragments for identification of blow fly species collected from real crime scene. The COI gene from blow fly specimens were sequenced and deposited in GenBank to expand local databases. The sequenced COI gene was useful in identifying calliphorids retrieved from human corpses.
    Matched MeSH terms: Diptera/genetics
  17. Kavitha R, Nazni WA, Tan TC, Lee HL, Isa MN, Azirun MS
    Malays J Pathol, 2012 Dec;34(2):127-32.
    PMID: 23424775 MyJurnal
    Forensic entomology applies knowledge about insects associated with decedent in crime scene investigation. It is possible to calculate a minimum postmortem interval (PMI) by determining the age and species of the oldest blow fly larvae feeding on decedent. This study was conducted in Malaysia to identify maggot specimens collected during crime scene investigations. The usefulness of the molecular and morphological approach in species identifications was evaluated in 10 morphologically identified blow fly larvae sampled from 10 different crime scenes in Malaysia. The molecular identification method involved the sequencing of a total length of 2.2 kilo base pairs encompassing the 'barcode' fragments of the mitochondrial cytochrome oxidase I (COI), cytochrome oxidase II (COII) and t-RNA leucine genes. Phylogenetic analyses confirmed the presence of Chrysomya megacephala, Chrysomya rufifacies and Chrysomya nigripes. In addition, one unidentified blow fly species was found based on phylogenetic tree analysis.
    Matched MeSH terms: Diptera/genetics*
  18. Tan SH, Aris EM, Surin J, Omar B, Kurahashi H, Mohamed Z
    Trop Biomed, 2009 Aug;26(2):173-81.
    PMID: 19901904
    The mitochondiral DNA region encompassing the cytochrome oxidase subunit I (COI) and cytochrome oxidase subunit II (COII) genes of two Malaysian blow fly species, Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) were studied. This region, which spans 2303bp and includes the COI, tRNA leucine and partial COII was sequenced from adult fly and larval specimens, and compared. Intraspecific variations were observed at 0.26% for Ch. megacephala and 0.17% for Ch. rufifacies, while sequence divergence between the two species was recorded at a minimum of 141 out of 2303 sites (6.12%). Results obtained in this study are comparable to published data, and thus support the use of DNA sequence to facilitate and complement morphology-based species identification.
    Matched MeSH terms: Diptera/genetics*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links