Displaying all 9 publications

Abstract:
Sort:
  1. Rakhmania, Kamyab H, Yuzir MA, Al-Qaim FF, Purba LDA, Riyadi FA
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71741-71753.
    PMID: 34480301 DOI: 10.1007/s11356-021-16197-z
    In this study, palm oil mill effluent (POME) was treated using electrocoagulation, whereby the influencing factors including voltage, electrolysis time, and electrolyte amount were optimized to achieve the highest chemical oxygen demand (COD) and color removal efficiencies. Graphite was selected as electrode material due to its performance better compared to aluminum and copper. Response surface methodology (RSM) was carried out for optimization of the electrocoagulation operating parameters. The best model obtained using Box-Behnken design (BBD) were quadratic for COD removal (R2 = 0.9844), color reduction (R2 = 0.9412), and oil and grease removal (R2 = 0.9724). The result from the analysis of variance (ANOVA) was obtained to determine the relationship between factors and treatment efficiencies. The experimental results under optimized conditions such as voltage 14, electrolysis time of 3 h, and electrolyte amount of 13.41 g/L show that the electrocoagulation process effectively reduced the COD (56%), color (65%), and oil and grease (99%) of the POME treatment. Graphical abstract.
    Matched MeSH terms: Electrocoagulation/methods
  2. Huda N, Raman AAA, Bello MM, Ramesh S
    J Environ Manage, 2017 Dec 15;204(Pt 1):75-81.
    PMID: 28865309 DOI: 10.1016/j.jenvman.2017.08.028
    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies.
    Matched MeSH terms: Electrocoagulation/methods*
  3. Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C
    J Hazard Mater, 2009 Aug 15;167(1-3):966-9.
    PMID: 19231076 DOI: 10.1016/j.jhazmat.2009.01.081
    Removal of arsenic from aqueous solution was carried out using electrocoagulation. Experiments were conducted using mild steel sacrificial anode covering wide range in operating conditions to assess the removal efficiency. The maximum arsenic removal efficiency was recorded as 94% under optimum condition. The electrocoagulation mechanism of arsenic removal has been developed to understand the effect of applied charge and electrolyte pH on arsenic removal efficiency. Further the experimental data were tested with different adsorption isotherm model to describe the electrocoagulation process.
    Matched MeSH terms: Electrocoagulation/methods*
  4. Tan LS, Daud MH, Nasirudin N
    J Hand Surg Asian Pac Vol, 2018 Dec;23(4):577-580.
    PMID: 30428790 DOI: 10.1142/S2424835518720335
    Pyogenic granuloma, also known as lobular capillary hemangioma, is a benign vascular lesion of the skin or mucous membrane with rapid growth or repetitive trauma. Rarely seen in adult, its management varies and surgical intervention is usually common. We report a case of pyogenic granuloma of the right index finger in a 46-year-old gentleman who presented with painless swelling of the right index finger after a trivial injury. Wedge biopsy confirmed the diagnosis and excision of the granuloma measuring 3 cm × 3 cm × 2 cm was done with curettage and electrocautery over the base of granuloma. The wound subsequently healed well with good functional and aesthetic outcome.
    Matched MeSH terms: Electrocoagulation/methods*
  5. Asaithambi P, Aziz ARA, Sajjadi B, Daud WMABW
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5168-5178.
    PMID: 27221586 DOI: 10.1007/s11356-016-6909-5
    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm(2)), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm(2), electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
    Matched MeSH terms: Electrocoagulation/methods*
  6. Danial R, Sobri S, Abdullah LC, Mobarekeh MN
    Chemosphere, 2019 Oct;233:559-569.
    PMID: 31195261 DOI: 10.1016/j.chemosphere.2019.06.010
    In this study, the performance of glyphosate removal in an electrocoagulation batch with two electrodes formed by the same metal type, consisting of aluminum, iron, steel and copper have been compared. The aim of this study intends to remove glyphosate from an aqueous solution by an electrocoagulation process using metal electrode plates, which involves electrogeneration of metal cations as coagulant agents. The production of metal cations showed an ability to bind together to form aggregates of flocs composed of a combination of glyphosate and metal oxide. Electrocoagulation using aluminum electrodes indicated a high percentage removal of glyphosate, 94.25%; followed by iron electrodes, 88.37%; steel electrodes, 62.82%; and copper electrodes, 46.69%. The treated aqueous solution was then analyzed by Fourier Transform Infrared Spectroscopy. Percentages of Carbon, Hydrogen, Nitrogen, Sulfur remaining in the treated aqueous solution after the electrocoagulation process have been determined. The treated water and sludge were characterized and the mechanism of the overall process was concluded as an outcome. An X-Ray Diffraction analysis of dried sludge confirmed that new polymeric compounds were formed during the treatment. The sludge composed of new compounds were also verified the removals. This study revealed that an electrocoagulation process using metal electrodes is reliable and efficient.
    Matched MeSH terms: Electrocoagulation/methods
  7. Isa MH, Ezechi EH, Ahmed Z, Magram SF, Kutty SR
    Water Res, 2014 Mar 15;51:113-23.
    PMID: 24412846 DOI: 10.1016/j.watres.2013.12.024
    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.
    Matched MeSH terms: Electrocoagulation/methods*
  8. Nasution MA, Yaakob Z, Ali E, Tasirin SM, Abdullah SR
    J Environ Qual, 2011 Jul-Aug;40(4):1332-9.
    PMID: 21712603 DOI: 10.2134/jeq2011.0002
    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively.
    Matched MeSH terms: Electrocoagulation/methods*
  9. Pui WC, Chieng TH, Siow SL, Nik Abdullah NA, Sagap I
    Asian Pac J Cancer Prev, 2020 Oct 01;21(10):2927-2934.
    PMID: 33112550 DOI: 10.31557/APJCP.2020.21.10.2927
    BACKGROUND: Various methods have been used for treatment of hemorrhagic radiation proctitis (HRP) with variable results. Currently, the preferred treatment is formalin application or endoscopic therapy with argon plasma coagulation. Recently, a novel therapy with colonic water irrigation and oral antibiotics showed promising results and more effective compared to 4% formalin application for HRP. The study objective is to compare the effect of water irrigation and oral antibiotics versus 4% formalin application in improving per rectal bleeding due to HRP and related symptoms such as diarrhoea, tenesmus, stool frequency, stool urgency and endoscopic findings.

    METHODS: We conducted a study on 34 patients with HRP and randomly assigned the patients to two treatment arm groups (n=17). The formalin group underwent 4% formalin dab and another session 4 weeks later. The irrigation group self-administered daily rectal irrigation at home for 8 weeks and consumed oral metronidazole and ciprofloxacin during the first one week. We measured the patients' symptoms and endoscopic findings before and after total of 8 weeks of treatment in both groups.

    RESULTS: Our study showed that HRP patients had reduced per rectal bleeding (p = 0.003) in formalin group, whereas irrigation group showed reduced diarrhoea (p=0.018) and tenesmus (p=0.024) symptoms. The comparison between the two treatment arms showed that irrigation technique was better than formalin technique for tenesmus (p=0.043) symptom only.

    CONCLUSION: This novel treatment showed benefit in treating HRP. It could be a new treatment option which is safe and conveniently self-administered at home or used as a combination with other therapies to improve the treatment outcome for HRP.
    .

    Matched MeSH terms: Electrocoagulation/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links