Displaying all 5 publications

Abstract:
Sort:
  1. Ismail H, Hanafiah MM
    J Environ Manage, 2020 Jun 15;264:110495.
    PMID: 32250915 DOI: 10.1016/j.jenvman.2020.110495
    Studies on sustainable management of waste from electrical and electronic equipment (or e-waste) have gained increasing attention from researchers around the world in recent years, with investigations into various aspects of e-waste management were investigated. Studies on e-waste generation by previous papers have been reviewed to provide an overview of the current research progress and recommendations for future research. The relevant existing studies were collected from various databases. Using content analysis, three main aspects of the existing studies were evaluated: the distribution and trends of the publications, the scope and boundaries of the studies, and the current research practices and research applications. Although there was a significant increasing trend of the amount of research on the evaluation of e-waste generation, however, the number of publications based on the countries of origin was still small. Another limitation was found related to the differences in the selection of research subjects and the level of analysis resulted in variations in the scopes and boundaries of the existing studies. Various other research areas were investigated further based on their research findings, but the analysis of various methodological aspects was complicated due to the increasing number of newly developed methodologies and the lack of comprehensive and up-to-date reviews on this research area. Additionally, there was also a need to evaluate emerging and/or older technology, which led electrical appliances to be overlooked. We found that comprehensive and up-to-date reviews of the methodological aspects of e-waste generation are still lacking. Based on the research gaps and limitations discussed, recommendations for future research were made.
    Matched MeSH terms: Electronic Waste*
  2. Rana S, Mishra P, Wahid ZA, Thakur S, Pant D, Singh L
    J Environ Sci (China), 2020 Mar;89:47-64.
    PMID: 31892401 DOI: 10.1016/j.jes.2019.09.023
    In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.
    Matched MeSH terms: Electronic Waste*
  3. Ilankoon IMSK, Ghorbani Y, Chong MN, Herath G, Moyo T, Petersen J
    Waste Manag, 2018 Dec;82:258-275.
    PMID: 30509588 DOI: 10.1016/j.wasman.2018.10.018
    E-waste, or waste generated from electrical and electronic equipment, is considered as one of the fastest-growing waste categories, growing at a rate of 3-5% per year in the world. In 2016, 44.7 million tonnes of e-waste were generated in the world, which is equivalent to 6.1 kg for each person. E-waste is classified as a hazardous waste, but unlike other categories, e-waste also has significant potential for value recovery. As a result it is traded significantly between the developed and developing world, both as waste for disposal and as a resource for metal recovery. Only 20% of global e-waste in 2016 was properly recycled or disposed of, with the fate of the remaining 80% undocumented - likely to be dumped, traded or recycled under inferior conditions. This review paper provides an overview of the global e-waste resource and identifies the major challenges in the sector in terms of generation, global trade and waste management strategies. It lists the specific hazards associated with this type of waste that need to be taken into account in its management and includes a detailed overview of technologies employed or proposed for the recovery of value from e-waste. On the basis of this overview the paper identifies future directions for effective e-waste processing towards sustainable waste/resource management. It becomes clear that there is a strong divide between developed and developing countries with regard to this sector. While value recovery is practiced in centralised facilities employing advanced technologies in a highly regulated industrial environment in the developed world, in the developing world such recovery is practiced in a largely unregulated artisanal industry employing simplistic, labour intensive and environmentally hazardous approaches. Thus value is generated safely in the hi-tech environment of the developed world, whereas environmental burdens associated with exported waste and residual waste from simplistic processing remain largely in developing countries. It is argued that given the breadth of available technologies, a more systematic evaluation of the entire e-waste value chain needs to be conducted with a view to establishing integrated management of this resource (in terms of well-regulated value recovery and final residue disposal) at the appropriately local rather than global scale.
    Matched MeSH terms: Electronic Waste*
  4. Mahmud I, Sultana S, Rahman A, Ramayah T, Cheng Ling T
    Waste Manag Res, 2020 Dec;38(12):1438-1449.
    PMID: 32364437 DOI: 10.1177/0734242X20914753
    Each year Bangladesh produces around 400,000 metric tonnes of e-waste. E-waste accumulation is expected to increase by 20% annually. In order to facilitate e-waste recycling, it is crucial to identify the factors. In this study, building on the stimulus-organism-response framework, we develop a research model to explore the effect of information publicity, ascription of responsibility and convenience of recycling on the recycling attitude, subjective norm, personal norm and perceived behaviour control which lead to recycling intention. Data were gathered from 127 small and medium electronics store managers. The structural equation modelling technique was used to test the paths. The result suggests a significant influence of the element of stimulus (S) on the element of organism (O). The relationship between the element of organism (O) and the element of response (R) is partial. This paper contributes to the body of work dedicated to helping us better understand the recycling behaviour from the stimulus-organism-response perspective. From the viewpoint of practice, this research sheds light on some of the challenges that the implementer might face when making strategy and policy for e-waste management in Bangladesh.
    Matched MeSH terms: Electronic Waste*
  5. Eguchi A, Isobe T, Ramu K, Tue NM, Sudaryanto A, Devanathan G, et al.
    Chemosphere, 2013 Mar;90(9):2365-71.
    PMID: 23149186 DOI: 10.1016/j.chemosphere.2012.10.027
    In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China.
    Matched MeSH terms: Electronic Waste
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links