Displaying all 7 publications

Abstract:
Sort:
  1. Ataollahi F, Pingguan-Murphy B, Moradi A, Wan Abas WA, Chua KH, Abu Osman NA
    Cytotherapy, 2014 Aug;16(8):1145-52.
    PMID: 24831838 DOI: 10.1016/j.jcyt.2014.01.010
    Numerous protocols for the isolation of bovine aortic endothelial cells have been described in the previous literature. However, these protocols prevent researchers from obtaining the pure population of endothelial cells. Thus, this study aimed to develop a new and economical method for the isolation of pure endothelial cells by introducing a new strategy to the enzymatic digestion method proposed by previous researchers.
    Matched MeSH terms: Endothelium, Vascular/cytology*
  2. Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WA, et al.
    J Biomed Mater Res A, 2015 Jul;103(7):2203-13.
    PMID: 24733741 DOI: 10.1002/jbm.a.35186
    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.
    Matched MeSH terms: Endothelium, Vascular/cytology*
  3. Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SD
    PLoS One, 2020;15(8):e0237141.
    PMID: 32764789 DOI: 10.1371/journal.pone.0237141
    Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
    Matched MeSH terms: Endothelium, Vascular/cytology
  4. Einstein JW, Mustafa MR, Nishigaki I, Rajkapoor B, Moh MA
    Methods Find Exp Clin Pharmacol, 2008 Oct;30(8):599-605.
    PMID: 19088944 DOI: 10.1358/mf.2008.30.8.1268401
    The protective effect of methanol extracts of Cassia fistula (flowers, leaves and bark) was examined in vitro in human umbilical vein endothelial cells (HUVEC) against toxicity induced by glycated protein (GFBS) in vitro. The experiments consisted of eight groups of HUVEC with five flasks in each group. Group I was treated with 15% FBS, group II with GFBS (70 microM) alone, and the other six groups were treated with GFBS plus 25 and 50 microg of each of the three types of C. fistula extracts. After 72 h of incubation, cells were collected and tested for lipid peroxidation, antioxidant enzyme activities and glutathione S-transferase (GST). The protective effect of C. fistula extracts against GFBS-induced cytotoxicity was examined in HUVEC by using trypan blue exclusion and MTT assays. Results showed that HUVEC incubated with GFBS alone showed a significant (P < 0.001) elevation of lipid peroxidation accompanied by depletion of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase (GR), in addition to decreased cytosolic GST. Treatment of HUVEC with C. fistula extracts at a concentration of 25 and 50 microg significantly decreased lipid peroxidation and normalized the activities of the antioxidant enzymes and GST levels in a concentration-dependent manner. Morphological changes of HUVEC were compared with respective controls; in addition, the C. fistula extracts increased the viability of HUVEC damaged by GFBS. A protective effect of C. fistula extracts on HUVEC against GFBS-induced toxicity suggested a potential beneficial effect of the extract in preventing diabetic angiopathies.
    Matched MeSH terms: Endothelium, Vascular/cytology
  5. Muniandy S, Qvist R, Yan GO, Bee CJ, Chu YK, Rayappan AV
    J. Med. Invest., 2009 Feb;56(1-2):6-10.
    PMID: 19262007
    Hyperglycemia and insulin resistance are common in many critically ill patients. Hyperglycemia increases the production of reactive oxygen species in cells, stimulates the production of the potent proinflammatory cytokines IL-8 and TNF-alpha, and enhances the expression of haem oxygenase-1, an inducible stress protein. It has been shown that administration of insulin and the semi-essential amino acid glutamine have been beneficial to the septic patient. The aim of our study is to test whether these two molecules, glutamine and insulin used in combination attenuate the proinflammatory responses in endothelial cells which have been triggered by hyperglycaemia. Our results demonstrate that a combination of insulin and glutamine are significantly more effective in reducing the expression of IL-8, TNF-alpha and HO-1 than insulin or glutamine alone.
    Matched MeSH terms: Endothelium, Vascular/cytology
  6. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
    Matched MeSH terms: Endothelium, Vascular/cytology
  7. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
    Matched MeSH terms: Endothelium, Vascular/cytology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links