Displaying all 6 publications

Abstract:
Sort:
  1. Hussin AM, Ashor AW, Schoenmakers I, Hill T, Mathers JC, Siervo M
    Eur J Nutr, 2017 Apr;56(3):1095-1104.
    PMID: 26848580 DOI: 10.1007/s00394-016-1159-3
    BACKGROUND: In addition to regulating calcium homoeostasis and bone health, vitamin D influences vascular and metabolic processes including endothelial function (EF) and insulin signalling. This systematic review and meta-analysis of randomised clinical trials (RCTs) were conducted to investigate the effect of vitamin D supplementation on EF and to examine whether the effect size was modified by health status, study duration, dose, route of vitamin D administration, vitamin D status (baseline and post-intervention), body mass index (BMI), age and type of vitamin D.

    METHODS: We searched the Medline, Embase, Cochrane Library and Scopus databases from inception until March 2015 for studies meeting the following criteria: (1) RCT with adult participants, (2) vitamin D administration alone, (3) studies that quantified EF using commonly applied methods including ultrasound, plethysmography, applanation tonometry and laser Doppler.

    RESULTS: Sixteen articles reporting data for 1177 participants were included. Study duration ranged from 4 to 52 weeks. The effect of vitamin D on EF was not significant (SMD: 0.08, 95 % CI -0.06, 0.22, p = 0.28). Subgroup analysis showed a significant improvement of EF in diabetic subjects (SMD: 0.31, 95 % CI 0.05, 0.57, p = 0.02). A non-significant trend was found for diastolic blood pressure (β = 0.02; p = 0.07) and BMI (β = 0.05; p = 0.06).

    CONCLUSIONS: Vitamin D supplementation did not improve EF. The significant effect of vitamin D in diabetics and a tendency for an association with BMI may indicate a role of excess adiposity and insulin resistance in modulating the effects of vitamin D on vascular function. This remains to be tested in future studies.

    Matched MeSH terms: Endothelium/drug effects*
  2. Ibrahim NN, Rasool AH, Wong AR, Rahman AR
    Clin Chim Acta, 2009 Nov;409(1-2):62-6.
    PMID: 19723516 DOI: 10.1016/j.cca.2009.08.018
    Pulse wave analysis (PWA) combined with beta(2)-agonist challenge has recently been used to assess endothelial function. beta-2 adrenergic receptor (beta(2)AR) polymorphisms may affect response to beta(2)-agonist. We determined whether beta(2)AR polymorphisms influence endothelial response in our model using PWA and salbutamol.
    Matched MeSH terms: Endothelium/drug effects
  3. Ghani RA, Bin Yaakob I, Wahab NA, Zainudin S, Mustafa N, Sukor N, et al.
    J Clin Lipidol, 2013 Sep-Oct;7(5):446-53.
    PMID: 24079286 DOI: 10.1016/j.jacl.2013.04.004
    BACKGROUND: Type 2 diabetes is associated with early development of endothelial dysfunction. Patients present with typical dyslipidemia (predominantly high levels of triglycerides [TG] and low levels of high-density lipoprotein cholesterol [HDL-C]) or mixed hypercholesterolemia (high levels of low-density lipoprotein cholesterol [LDL-C] and TG with low HDL-C). Normal levels include LDL-C < 100 mg/dL, TG < 135 mg/dL, and HDL-C > 40 mg/dL for men and >50 mg/dL for women.
    OBJECTIVE: To determine the effects of 8 weeks' administration of fenofibrate on inflammatory markers, metabolic parameters, and endothelial dysfunction.
    METHODS: We administered micronized fenofibrate (Laboratories Fourneir S.A Dijon, France) daily for 8 weeks to 40 dyslipidemic, type 2 diabetes patients with equal numbers in each arm of the typical or mixed dyslipidemia groups. Noninvasive endothelial function assessments were performed and serum inflammatory markers obtained before and after treatment.
    RESULTS: The typical group demonstrated significantly greater TG reduction and HDL-C increment, ie, 56% vs, 21.3% (P < .005) and 21% vs. 7.6% (P = .001), respectively, compared with the mixed group. There was greater LDL-C reduction within the mixed group compared with the typical group 21.0% vs. 2.2% (P < .05). Endothelial dysfunction was present in both groups at baseline. After treatment, the typical group demonstrated significant improvement in resting brachial diameter (3.9 mm [interquartile range {IQR} 3.3-4.7] to 4.2 mm [IQR 3.4-4.8], P = .001) compared with no change within the mixed group (3.6 mm [IQR 3.1-5.4] to 3.7 mm [IQR 3.1-5.3], P = .26). Flow-mediated diameter improved significantly in both groups. The mixed group had significantly greater levels of hs-CRP at baseline but no changes throughout the study. The mixed group demonstrated an increase in vascular adhesion molecule-1 from 706 ng/mL (IQR 566-1195) to 845 ng/mL (637-1653; P = .01), a reduction of tumor necrosis factor-α from 7.0 pg/mL (IQR 1.0-43.5) to 2.5 pg/mL (IQR 1.5-13.5; P = .04) throughout the study.
    CONCLUSIONS: We effectively compared 8 weeks of fenofibrate therapy in type 2 diabetics with contrasting lipid abnormalities. The typical dyslipidemia group showed significantly greater lipid improvements compared with the mixed dyslipidemia group. Both groups had improvements in endothelial functions that were independent of the lipid levels. We concluded that fibrate therapy in type 2 diabetics is beneficial, especially those with typical dyslipidemia and extends beyond its lipid lowering properties.
    KEYWORDS: Endothelial dysfunction; Fenofibrate; High-density lipoprotein cholesterol; Low density lipoprotein; Noninvasive endothelial function assessments; Triglyceride; Vascular cell adhesion molecule-1; hsCRP
    Matched MeSH terms: Endothelium/drug effects
  4. Tanaka S, Yoichi S, Ao L, Matumoto M, Morimoto K, Akimoto N, et al.
    Phytother Res, 2001 Dec;15(8):681-6.
    PMID: 11746860
    In the search for agents effective against immune-mediated disorders and inflammation, we have screened Malaysian medicinal plants for the ability to inhibit the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on the surface of murine endothelial cells (F-2), and mouse myeloid leukaemia cells (M1), respectively. Of 41 kinds (29 species, 24 genera, 16 families) of Malaysian plants tested, 10 and 19 plant samples significantly downregulated the expression of ICAM-1 and VCAM-1, respectively. Bioassay-directed fractionation of an extract prepared from the bark of Goniothalamus andersonii showed that its ingredients, goniothalamin (1) and goniodiol (2) inhibited the cell surface expression of both ICAM-1 and VCAM-1. The present results suggest that Malaysian medicinal plants may be abundant natural resources for immunosuppressive and antiinflammatory substances.
    Matched MeSH terms: Endothelium/drug effects
  5. Batumalaie K, Amin MA, Murugan DD, Sattar MZ, Abdullah NA
    Sci Rep, 2016 06 02;6:27236.
    PMID: 27250532 DOI: 10.1038/srep27236
    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings.
    Matched MeSH terms: Endothelium/drug effects*
  6. Murugan D, Lau YS, Lau CW, Lau WC, Mustafa MR, Huang Y
    PLoS One, 2015;10(12):e0145413.
    PMID: 26709511 DOI: 10.1371/journal.pone.0145413
    Angiotensin 1-7 (Ang 1-7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1-7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1-7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1-7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1-7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1-7. In addition, Ang 1-7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1-7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function.
    Matched MeSH terms: Endothelium/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links