Displaying all 9 publications

Abstract:
Sort:
  1. Kai T, Mak GL, Wada S, Nakazato T, Takanashi H, Uemura Y
    Bioresour Technol, 2014 Jul;163:360-3.
    PMID: 24813567 DOI: 10.1016/j.biortech.2014.04.030
    In this study, a novel method for the production of biodiesel under mild conditions using fine particles of sodium methoxide formed in dimethyl carbonate (DMC) is proposed. Biodiesel is generally produced from vegetable oils by the transesterification of triglycerides with methanol. However, this reaction produces glycerol as a byproduct, and raw materials are not effectively utilized. Transesterification with DMC has recently been studied because glycerol is not formed in the process. Although solid-state sodium methoxide has been reported to be inactive for this reaction, the catalytic activity dramatically increased with the preparation of fine catalyst powders by crystallization. The transesterification of canola oil with DMC was studied using this catalyst for the preparation of biodiesel. A conversion greater than 96% was obtained at 65°C for 2h with a 3:1M ratio of DMC and oil and 2.0 wt% catalyst.
    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry*
  2. Marikkar JM, Rana S
    J Oleo Sci, 2014;63(9):867-73.
    PMID: 25174673
    A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.
    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry*
  3. Ali MA, Nouruddeen ZB, Muhamad II, Latip RA, Othman NH
    Acta Sci Pol Technol Aliment, 2013 Jul-Sep;12(3):241-52.
    PMID: 24584953
    Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO.
    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry*
  4. Teo YY, Misran M, Low KH
    J Liposome Res, 2014 Sep;24(3):241-8.
    PMID: 24597523 DOI: 10.3109/08982104.2014.891234
    A vesicle is a microscopic particle composed of a lipid bilayer membrane that separates the inner aqueous compartment from the outer aqueous environment. Palmitoleate-palmitoleic acid vesicles were prepared and their physico-chemical properties were investigated. Moreover, mixed vesicles composed of palmitoleic acid and PEGylated lipid and/or a mixture of phospholipids were also prepared. The stabilizing effects of these double-chain lipids on the formation of palmitoleate-palmitoleic acid vesicles were studied. Stability of the vesicle suspension was examined using particle size and zeta potential at 30 °C. The magnitude of the zeta potential was relatively lower in the vesicle suspension with the presence of phospholipid. Although some of the mixed vesicles that were formed were not very stable, they displayed potential for encapsulating the active ingredient calcein and the encapsulation efficiencies of calcein were encouraging. The palmitoleate-palmitoleic acid-DPPE-PEG2000 vesicle showed the most promising stability and encapsulation efficiency.
    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry*
  5. Jahangirian H, Haron MJ, Silong S, Yusof NA
    J Oleo Sci, 2011;60(6):281-6.
    PMID: 21606615
    Phenyl fatty hydroxamic acids (PFHAs) were synthesized from canola or palm oils and phenyl hydroxylamine (FHA) catalyzed by Lipozyme TL IM or RM IM. The reaction was carried out by shaking the reaction mixture at 120 rpm. The optimization was carried out by changing the reaction parameters, namely; temperature, organic solvent, amount and kind of enzyme, period of reaction and the mol ratio of reactants. The highest conversion was obtained when the reaction was carried out under the following conditions: temperature, 39°C; solvent, petroleum ether; kind and amount of lipase, 80 mg Lipozyme TL IM/mmol oil; reaction period, 72 h and FHA-oil ratio, 7.3 mmol FHA/ mmol oil. The highest conversion percentage of phenyl hydroxylaminolysis of the Ladan and Kristal brands commercial canola oils, palm stearin and palm kernel oils were 55.6, 52.2, 51.4 and 49.7 %, respectively.
    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry
  6. Illiyin MR, Marikkar JM, Loke MK, Shuhaimi M, Mahiran B, Miskandar MS
    J Oleo Sci, 2014;63(1):39-46.
    PMID: 24389796
    A study was carried out to compare the composition and thermal properties of lard (LD) and engkabang fat (EF) - canola oil (CaO) blend interesterified with Candida antartica lipase (C. antartica). A fat blend EF-4 (40% EF in CaO) was prepared and interesterified using C. antartica lipase at 60°C for different time intervals (6 h, 12 h and 24 h) with 200 rpm agitation. The fat blends before and after interesterification were compared to LD with respect to their slip melting points (SMP), fatty acid and triacyglycerol (TAG) compositions, melting, solidification and polymorphic properties. Result showed that the slip melting point (SMP) of the fat blend interesterified for 6 h was the closest to that of LD. The solid fat content (SFC) values of fat blends interesterified for 12 and 24 h were found to become equal to those of LD within the temperature range of 0 to 20°C. In addition, all three interesterified blends had SFC values similar to those of LD within the temperature range of 30-40°C. According to thermal analysis, the transition of the fat blend interesterified for 24 h appearing at -2.39°C was similar to the low melting thermal transition of LD and the transition of the fat blend interesterified for 12 h appearing at 26.25°C was similar to the high melting thermal transition of LD. However, there is no compatibility between LD and all three interesterified blends with regard to polymorphic behaviour.
    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry*
  7. Ceesay A, Nor Shamsudin M, Aliyu-Paiko M, Ismail IS, Nazarudin MF, Mohamed Alipiah N
    Biomed Res Int, 2019;2019:2640684.
    PMID: 31119160 DOI: 10.1155/2019/2640684
    The aim of the present study was to extract and characterize bioactive components from separate body organs of Holothuria leucospilota. Preliminary qualitative assessment of the crude extracts was positive for phenols, terpenoids, carbohydrates, flavonoids, saponins, glycosides, cardiac glycosides, steroids, phlobatannins, and tannins in all body organs evaluated. Phenolics were the most abundant group of bioactives accounting for approximately 80%. The extraction solvent mixtures that yielded most compounds evaluated were methanol/acetone (3:1, v:v) and methanol/distilled water (3:1, v:v). In other analyses, GC-MS data revealed diverse metabolic and biologically active compounds, where those in high concentrations included 2-Pentanone, 4-hydroxy-4-methyl- among the ketones; phenol- 2,4-bis(1,1-dimethylethyl)-, a phenol group; and 2-Chlorooctane, a hydrocarbon. Among FA and their methyl/ethyl esters, n-hexadecanoic acid, 5,8,11,14-eicosatetraenoic acid ethyl ester (arachidonic acid), and 5,8,11,14,17-eicosapentaenoic acid methyl ester (EPA) were among the most abundant FAMEs accounting for approximately 50% of the subgroups measured. Data from GC-FID analysis revealed methyl laurate (C12:0), methyl myristate (C14:0), methyl palmitate (C16:0), and methyl stearate (18:0) methyl esters as the most abundant saturated FA, whereas cis-9-oleic methyl ester (C18:1) and methyl linoleate (C18:2) were found as the major monounsaturated FA and PUFA FAMEs, respectively, in the body wall of the species. Taken together, the extraction and characterization of different categories of metabolically and biologically active compounds in various organ extracts of H. leucospilota suggest that the species is potentially a rich source of cholesterol-lowering, antioxidant, antimicrobial, and anticancer agents. These substances are known to benefit human health and assist in disease prevention. These findings justify the use of sea cucumbers in traditional folklore medication and the current interest and attention focused on the species to mine for bioactives in new drugs research.
    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry*
  8. Hussain S, Ullah F, Ayaz M, Ali Shah SA, Ali Shah AU, Shah SM, et al.
    Drug Des Devel Ther, 2019;13:4195-4205.
    PMID: 31849451 DOI: 10.2147/DDDT.S228971
    Background: Cancer is one of the chronic health conditions worldwide. Various therapeutically active compounds from medicinal plants were the current focus of this research in order to uncover a treatment regimen for cancer. Anchusa arvensis (A. anchusa) (L.) M.Bieb. contains many biologically active compounds.

    Methods: In the current study, new ester 3-hydroxyoctyl -5- trans-docosenoate (compound-1) was isolated from the chloroform soluble fraction of A. anchusa using column chromatography. Using MTT assay, the anticancer effect of the compound was determined in human hepatocellular carcinoma cells (HepG-2) compared with normal epithelial cell line (Vero). DPPH and ABTS radical scavenging assays were performed to assess the antioxidant potential. The Molecular Operating Environment (MOE-2016) tool was used against tyrosine kinase.

    Results: The structure of the compound was elucidated based on IR, EI, and NMR spectroscopy technique. It exhibited a considerable cytotoxic effect against HepG-2 cell lines with IC50 value of 6.50 ± 0.70 µg/mL in comparison to positive control (doxorubicin) which showed IC50 value of 1.3±0.21 µg/mL. The compound did not show a cytotoxic effect against normal epithelial cell line (Vero). The compound also exhibited significant DPHH scavenging ability with IC50 value of 12 ± 0.80 µg/mL, whereas ascorbic acid, used as positive control, demonstrated activity with IC50 = 05 ± 0.15 µg/mL. Similarly, it showed ABTS radical scavenging ability (IC50 = 130 ± 0.20 µg/mL) compared with the value obtained for ascorbic acid (06 ± 0.85 µg/mL). In docking studies using MOE-2016 tool, it was observed that compound-1 was highly bound to tyrosine kinase by having two hydrogen bonds at the hinge region. This good bonding network by the compound might be one of the reasons for showing significant activity against this enzyme.

    Conclusion: Our findings led to the isolation of a new compound from A. anchusa which has significant cytotoxic activity against HepG-2 cell lines with marked antioxidant potential.

    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry
  9. Bonsu KO, Owusu IK, Buabeng KO, Reidpath DD, Kadirvelu A
    J Am Heart Assoc, 2017 Apr 01;6(4).
    PMID: 28365564 DOI: 10.1161/JAHA.116.004706
    BACKGROUND: Randomized control trials of statins have not demonstrated significant benefits in outcomes of heart failure (HF). However, randomized control trials may not always be generalizable. The aim was to determine whether statin and statin type-lipophilic or -hydrophilic improve long-term outcomes in Africans with HF.

    METHODS AND RESULTS: This was a retrospective longitudinal study of HF patients aged ≥18 years hospitalized at a tertiary healthcare center between January 1, 2009 and December 31, 2013 in Ghana. Patients were eligible if they were discharged from first admission for HF (index admission) and followed up to time of all-cause, cardiovascular, and HF mortality or end of study. Multivariable time-dependent Cox model and inverse-probability-of-treatment weighting of marginal structural model were used to estimate associations between statin treatment and outcomes. Adjusted hazard ratios were also estimated for lipophilic and hydrophilic statin compared with no statin use. The study included 1488 patients (mean age 60.3±14.2 years) with 9306 person-years of observation. Using the time-dependent Cox model, the 5-year adjusted hazard ratios with 95% CI for statin treatment on all-cause, cardiovascular, and HF mortality were 0.68 (0.55-0.83), 0.67 (0.54-0.82), and 0.63 (0.51-0.79), respectively. Use of inverse-probability-of-treatment weighting resulted in estimates of 0.79 (0.65-0.96), 0.77 (0.63-0.96), and 0.77 (0.61-0.95) for statin treatment on all-cause, cardiovascular, and HF mortality, respectively, compared with no statin use.

    CONCLUSIONS: Among Africans with HF, statin treatment was associated with significant reduction in mortality.

    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links