Displaying all 6 publications

Abstract:
Sort:
  1. Ang HH, Cheang HS, Mak JW
    Chemotherapy, 2005 Oct;51(6):377-80.
    PMID: 16227695
    Exposure of Plasmodium falciparum to increasing sublethal drug concentrations followed by drug treatment led to the development of many resistant parasites. Therefore, the susceptibility of these clones to the type II antifolate drugs, cycloguanil and pyrimethamine, before and after subculturing them in vitro for a period of 3 years, was studied.
    Matched MeSH terms: Folic Acid Antagonists/pharmacology*
  2. Ang HH, Lam CK, Wah MJ
    Chemotherapy, 1996 Sep-Oct;42(5):318-23.
    PMID: 8874969
    Six clones were derived from each Plasmodium falciparum isolate obtained from Malaysia, Africa and Thailand and were characterized against type II antifolate drugs, cycloguanil and pyrimethamine using the modified in vitro microtechnique. Results showed that these isolates were of a heterogeneous population, with 50% inhibitory concentrations of Gombak A clones at 0.0151-0.1450 and 0.0068-0.1158 microM, Gambian clones at 0.0056-0.1792 and 0.0004-0.0068 microM and TGR clones at 0.0103-0.0703 and 0.0776-0.3205 microM against cycloguanil and pyrimethamine, respectively. All clones displayed similar susceptibilities as their parent isolates except A/D3, A/D5, A/G4 and A/H7 clones which were sensitive to cycloguanil at 0.0735, 0.0151, 0.0540 and 0.0254 microM but Gm/B2 clone was resistant at 0.1792 microM, respectively. However, A/D3, TGR/B4, TGR/B7, TGR/C4, TGR/C7 and TGR/H2 clones were resistant to pyrimethamine at 0.1158, 0.1070, 0.1632, 0.1580, 0.2409 and 0.3205 microM, respectively. Further results indicated that they were pure clones compared to their parent isolates as their drug susceptibility studies were statistically different (p < 0.05).
    Matched MeSH terms: Folic Acid Antagonists/pharmacology*
  3. Ang HH, Chan KL, Mak JW
    J Parasitol, 1996 Dec;82(6):1029-31.
    PMID: 8973418
    Six clones were derived from each Malaysian Plasmodium falciparum isolate and characterized for their susceptibilities against type II antifolate drugs, cycloguanil and pyrimethamine. Results showed that these isolates were of a heterogeneous population, with average IC50 values of Gombak C clones at 0.012-0.084 microM and 0.027-0.066 microM, ST 9 clones at 0.019-0.258 microM and 0.027-0.241 microM, ST 12 clones at 0.015-0.342 microM and 0.012-0.107 microM, ST 85 clones at 0.022-0.087 microM and 0.024-0.426 microM, and ST 148 clones at 0.027-0312 microM and 0.029-0.690 microM against cycloguanil and pyrimethamine, respectively. Generally, most of these clones displayed susceptibility patterns similar to their parent isolates except ST 9/A4, ST 9/A7, ST 9/B5, ST 9/D9, ST 9/D10, ST 148/A4, ST 148/A5, ST 148/A7, ST 148/F7, ST 148/F8 clones, which were sensitive at 0.027 microM, 0.019 microM, 0.022 microM, 0.063 microM, 0.037 microM, 0.031 microM, 0.042, microM, 0.042 microM, 0.062 microM, and 0.027 microM, whereas, ST 12/D7 clone was resistant at 0.342 microM, against cycloguanil respectively. However, ST 9/A4, ST 9/D8, ST 12/D5, ST 85/A5, ST 85/B3, ST 85/B4, ST 85/D3, ST 85/D7, ST 148/A6, and ST 148/A7 clones were resistant to pyrimethamine at 0.158 microM, 0.241 microM, 0.107 microM, 0.223 microM, 0.393 microM, 0.402 microM, 0.426 microM, 0.115 microM, 0.690 microM, and 0.520 microM, respectively.
    Matched MeSH terms: Folic Acid Antagonists/pharmacology*
  4. Li Y, Ouyang Y, Wu H, Wang P, Huang Y, Li X, et al.
    Eur J Med Chem, 2022 Jan 15;228:113979.
    PMID: 34802838 DOI: 10.1016/j.ejmech.2021.113979
    The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 μg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.
    Matched MeSH terms: Folic Acid Antagonists/pharmacology*
  5. Sugaram R, Suwannasin K, Kunasol C, Mathema VB, Day NPJ, Sudathip P, et al.
    Malar J, 2020 Mar 04;19(1):107.
    PMID: 32127009 DOI: 10.1186/s12936-020-03176-x
    BACKGROUND: Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples.

    METHODS: Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated.

    RESULTS: Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification.

    CONCLUSIONS: Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.

    Matched MeSH terms: Folic Acid Antagonists/pharmacology*
  6. Grigg MJ, Barber BE, Marfurt J, Imwong M, William T, Bird E, et al.
    PLoS One, 2016;11(3):e0149519.
    PMID: 26930493 DOI: 10.1371/journal.pone.0149519
    BACKGROUND: Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission.

    METHODS: The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket.

    RESULTS: Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates.

    CONCLUSION: Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

    Matched MeSH terms: Folic Acid Antagonists/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links