Displaying all 6 publications

  1. Jie Y, Ismail NH, Jie X, Isa ZM
    J Formos Med Assoc, 2011 Sep;110(9):555-63.
    PMID: 21930065 DOI: 10.1016/j.jfma.2011.07.003
    This review summarizes the results of epidemiological studies focusing on the detrimental effects of home environmental factors on asthma morbidity in adults. We reviewed the literature on indoor air quality (IAQ), physical and sociodemographic factors, and asthma morbidity in homes, and identified commonly reported asthma, allergic, and respiratory symptoms involving the home environment. Reported IAQ and asthma morbidity data strongly indicated positive associations between indoor air pollution and adverse health effects in most studies. Indoor factors most consistently associated with asthma and asthma-related symptoms in adults included fuel combustion, mold growth, and environmental tobacco smoke. Environmental exposure may increase an adult's risk of developing asthma and also may increase the risk of asthma exacerbations. Evaluation of present IAQ levels, exposure characteristics, and the role of exposure to these factors in relation to asthma morbidity is important for improving our understanding, identifying the burden, and for developing and implementing interventions aimed at reducing asthma morbidity.
    Matched MeSH terms: Formaldehyde/adverse effects
  2. Khalid S, Shaik Mossadeq WM, Israf DA, Hashim P, Rejab S, Shaberi AM, et al.
    Med Princ Pract, 2010;19(4):255-9.
    PMID: 20516700 DOI: 10.1159/000312710
    To study the effects of Tamarindus indica L. aqueous fruit extract on the antinociceptive activities in rodent models.
    Matched MeSH terms: Formaldehyde/adverse effects
  3. Armstrong RW, Imrey PB, Lye MS, Armstrong MJ, Yu MC, Sani S
    Int J Epidemiol, 2000 Dec;29(6):991-8.
    PMID: 11101539 DOI: 10.1093/ije/29.6.991
    BACKGROUND: During 1990-1992, 282 Chinese residents of Selangor and the Federal Territory, Malaysia with histologically confirmed nasopharyngeal carcinoma (NPC) were interviewed about occupational history, diet, alcohol consumption, and tobacco use, as were an equal number of Malaysian Chinese population controls, pair-matched to cases by age and sex.

    METHODS: Exposures to 20 kinds of workplace substances, solar and industrial heat, and cigarette smoke, were analysed by univariate and multivariate methods.

    RESULTS: Nasopharyngeal carcinoma was associated with occupational exposures to construction, metal and wood dusts; motor fuel and oil; paints and varnishes; certain other chemicals; industrial heat; solar heat from outdoor occupations; certain smokes; cigarette smoking; and childhood exposure to parental smoking. After adjustment for risk from diet and cigarette smoke, only wood dust (OR = 2.36; 95% CI : 1.33- 4.19), and industrial heat (OR = 2.21; 95% CI : 1.12-4.33) remained clearly associated. Wood dust remained statistically significant after further adjustment for social class. No significant crude or adjusted association was found between NPC and formaldehyde (adjusted OR = 0.71; 95% CI : 0.34-1.43).

    CONCLUSIONS: This study supports previous findings that some occupational inhalants are risk factors for NPC. The statistical effect of wood dust remained substantial after adjustment for diet, cigarette smoke, and social class. Intense industrial heat emerged as a previously unreported risk factor, statistically significant even after adjustment for diet and cigarette smoke. No association was found between NPC and formaldehyde.
    Matched MeSH terms: Formaldehyde/adverse effects*
  4. Armstrong RW, Rood MJ, Sani S, Mohamed M, Rashid M, Jab AT, et al.
    Asia Pac J Public Health, 2001;13(1):24-9.
    PMID: 12109256 DOI: 10.1177/101053950101300106
    The objective of this study was to establish baseline data about air pollutants potentially related to nasopharyngeal carcinoma (NPC) in the Federal Territory and Selangor, Malaysia. During 1991-1993, ambient air quality was monitored at 42 work sites representing ten industrial sectors: adhesive manufacturing, foundries, latex processing, metalworking, plywood/veneer milling, ricemilling, rubber tire manufacturing, sawmilling, shoemaking, and textile related industries. At each work site, aerosol particle size distributions and concentrations of formaldehyde, benzene, toluene, isopropyl alcohol, and furfural were measured. Mean aerosol particle concentrations ranged from 61 micrograms/m3 in foundries to 5,578 micrograms/m3 in ricemills, with five industries (adhesives, metalworking, ricemilling, sawmilling, and shoemaking) exceeding the US EPA 24-hr ambient air standard for PM-10. Formaldehyde concentrations exceeded the threshold limit value (TLV) in adhesives factories. Other vapours and elements measured were well below TLVs.
    Matched MeSH terms: Formaldehyde/adverse effects
  5. Sulaiman MR, Hussain MK, Zakaria ZA, Somchit MN, Moin S, Mohamad AS, et al.
    Fitoterapia, 2008 Dec;79(7-8):557-61.
    PMID: 18672036 DOI: 10.1016/j.fitote.2008.06.005
    The aqueous extract of Ficus deltoidea leaves was evaluated for possible antinociceptive activity in three models of nociception, namely, acetic acid-induced abdominal writhing, formalin and hot plate test. The results of the present study showed that intraperitoneal administration of the F. deltoidea leaves aqueous extract at the dose of 1, 50 and 100 mg/kg, 30 min prior to pain induction produced significant dose-dependent antinociceptive effect in all the models used, which indicating the presence of both central and peripherally mediated activities. Furthermore, the antinociceptive effect of the extract in the formalin and hot plate test was reversed by the non-selective opioid receptor antagonist naloxone suggesting that the endogenous opioid system is involved in its analgesic mechanism of action. Thus, the present results demonstrated that F. deltoidea leaves aqueous extract contains pharmacologically active constituents which possess antinociceptive activity justifying its popular therapeutic use in treating conditions associated with the painful conditions.
    Matched MeSH terms: Formaldehyde/adverse effects
  6. Norbäck D, Hashim JH, Hashim Z, Ali F
    Sci Total Environ, 2017 Aug 15;592:153-160.
    PMID: 28319702 DOI: 10.1016/j.scitotenv.2017.02.215
    This paper studied associations between volatile organic compounds (VOC), formaldehyde, nitrogen dioxide (NO2) and carbon dioxide (CO2) in schools in Malaysia and rhinitis, ocular, nasal and dermal symptoms, headache and fatigue among students. Pupils from eight randomly selected junior high schools in Johor Bahru, Malaysia (N=462), participated (96%). VOC, formaldehyde and NO2 were measured by diffusion sampling (one week) and VOC also by pumped air sampling during class. Associations were calculated by multi-level logistic regression adjusting for personal factors, the home environment and microbial compounds in the school dust. The prevalence of weekly rhinitis, ocular, throat and dermal symptoms were 18.8%, 11.6%, 15.6%, and 11.1%, respectively. Totally 20.6% had weekly headache and 22.1% fatigue. Indoor CO2 were low (range 380-690 ppm). Indoor median NO2 and formaldehyde concentrations over one week were 23μg/m3 and 2.0μg/m3, respectively. Median indoor concentration of toluene, ethylbenzene, xylene, and limonene over one week were 12.3, 1.6, 78.4 and 3.4μg/m3, respectively. For benzaldehyde, the mean indoor concentration was 2.0μg/m3 (median<1μg/m3). Median indoor levels during class of benzene and cyclohexane were 4.6 and 3.7μg/m3, respectively. NO2 was associated with ocular symptoms (p<0.001) and fatigue (p=0.01). Formaldehyde was associated with ocular (p=0.004), throat symptoms (p=0.006) and fatigue (p=0.001). Xylene was associated with fatigue (p<0.001) and benzaldehyde was associated with headache (p=0.03). In conclusion, xylene, benzaldehyde, formaldehyde and NO2 in schools can be risk factors for ocular and throat symptoms and fatigue among students in Malaysia. The indoor and outdoor levels of benzene were often higher than the EU standard of 5μg/m3.
    Matched MeSH terms: Formaldehyde/adverse effects*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links