Diffuse large B-cell lymphoma (DLBCL) is a heterogenous entity. The pattern of CD15, CD30 and Bcl-2 expression is not well documented, especially in local population. We investigated 67 consecutive cases of DLBCL by immunohistochemistry on paraffin-embedded tissue. The male to female ratio was 1.2:1 with median age of 55 years, and more common nodal than extranodal in presentation. Only 3 of 67 cases expressed CD15. In addition, three cases showed weak membrane staining for CD30. Only one of these three cases was noted to have co-expression of CD15 and with occasional tumour cells showing weak CD30 expression. Bcl-2 protein was expressed in 43 of 67 (64%), more frequently in nodal than in extranodal tumours. In conclusion, CD15 and CD30 expressions are infrequent in DLBCL, and co-expression is rare. Bcl-2 protein expression is common in DLBCL.
Breast cancer is one of the commonest cancers among women. Conventional therapies cause adverse side effects in patients. Cytokine immunotherapy such as interleukin-27 (IL-27) has been sought as an alternative cancer treatment in recent years. IL-27 has been shown to improve anticancer immunity and anti-angiogenesis in cancers, however, its effect on apoptotic and anti-apoptotic gene expression especially in breast cancers is yet to be explored. Cytotoxicity of IL-27 in non-cancerous (184b5) and cancerous (MCF-7 and MDA-MB-231) breast cell lines was first determined for 24-72 h in this study. The results indicated that IL-27 treatment did not retard 184b5 cell growth, however, did inhibit MCF-7 (48 h) and MDA-MB-231 (72 h) cell growth with IC50 at 442 and 457 ng/ml, respectively. Apoptotic (TRAIL, FADD, FAS, caspase-3 and caspase-8) and anti-apoptotic (BCL-2, AKT, and COX-2) genes were then amplified from untreated (control) and treated breast cancer cells and studied. TRAIL, caspase-3, caspase-8 gene expression was significantly (p < 0.05) upregulated in treated MCF-7 (442 ng/ml) and MDA-MB-231 (457 ng/ml) cells. Expression of FADD and FAS genes was not detected in both control and treated MCF-7 and MDA-MB-231 cells. COX-2 gene was also not expressed by MCF-7 cells, but reduced significantly (p < 0.05) in treated MDA-MB-231 cells. In MDA-MB-231 cells, IL-27 treatment seemed to slightly enhance the expression of AKT and BCL-2 genes which, on the other hand, was downregulated in treated MCF-7 cells. Conclusively, IL-27 is able to inhibit breast cancer cell growth and regulate apoptotic and anti-apoptotic gene expression in breast cancer cells.
Chronic myeloid leukaemia (CML) is a form of leukaemia derived from the myeloid cell lineage. Imatinib mesylate, the breakpoint cluster region-abelson murine leukeamia kinase inhibitor, is a specific reagent used in the clinical treatment of CML. The DNA topoisomerase II inhibitor, etoposide, is also employed as a therapeutic, though it is used to a lesser extent. The present study aims to evaluate the effects of CML-targeted therapy, utilising imatinib mesylate and etoposide in the in vitro treatment of parental sensitive and adriamycin-resistant CML in the K562 and K562/ADM cell lines, respectively. Preliminary work involved the screening of multidrug resistant (MDR) gene expression, including MDR1, MRP1 and B-cell lymphoma 2 (BCL-2) at the mRNA levels. The sensitive and resistant CML cell lines expressed the MRP1 gene, though the sensitive K562 cells expressed low, almost undetectable levels of MDR1 and BCL-2 genes relative to the K562/ADM cells. Following treatment with imatinib mesylate or etoposide, the IC50 for imatinib mesylate did not differ between the sensitive and resistant cell lines (0.492±0.024 and 0.378±0.029, respectively), indicating that imatinib mesylate is effective in the treatment of CML regardless of cell chemosensitivity. However, the IC50 for etoposide in sensitive K562 cells was markedly lower than that of K562/ADM cells (50.6±16.5 and 194±8.46 µM, respectively), suggesting that the higher expression levels of MDR1 and/or BCL-2 mRNA in resistant cells may be partially responsible for this effect. This is supported by terminal deoxynucleotidyl transferase dUTP nick-end labeling data, whereby a higher percentage of apoptotic cells were found in the sensitive and resistant K562 cells treated with imatinib mesylate (29.3±0.2 and 31.9±16.7%, respectively), whereas etoposide caused significant apoptosis of sensitive K562 cells (18.3±8.35%) relative to K562/ADM cells (5.17±3.3%). In addition, the MDR genes in K562/ADM cells were knocked down by short interfering RNAs. The percentage knockdowns were 15.4% for MRP1, 17.8% for MDR and 30.7% for BCL-2, which resulted in a non-significant difference in the half maximal inhibitory concentration value of K562/ADM cells relative to K562 cells upon treatment with etoposide.
Phytochemicals from Pseuduvaria species have been reported to display a wide range of biological activities. In the present study, a known benzopyran derivative, (6E,10E) isopolycerasoidol (1), and a new benzopyran derivative, (6E,10E) isopolycerasoidol methyl ester (2), were isolated from a methanol extract of Pseuduvaria monticola leaves. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR, IR, UV, and LCMS-QTOF, and by comparison with previously published data. The anti-proliferative and cytotoxic effects of these compounds on human breast cancer cell-lines (MCF-7 and MDA-MB-231) and a human normal breast epithelial cell line (MCF-10A) were investigated. MTT results revealed both (1) and (2) were efficient in reducing cell viability of breast cancer cells. Flow cytometry analysis demonstrated that (1) and (2) induced cell death via apoptosis, as demonstrated by an increase in phosphotidylserine exposure. Both compounds elevated ROS production, leading to reduced mitochondrial membrane potential and increased plasma membrane permeability in breast cancer cells. These effects occurred concomitantly with a dose-dependent activation of caspase 3/7 and 9, a down-regulation of the anti-apoptotic gene BCL2 and the accumulation of p38 MAPK in the nucleus. Taken together, our data demonstrate that (1) and (2) induce intrinsic mitochondrial-mediated apoptosis in human breast cancer cells, which provides the first pharmacological evidence for their future development as anticancer agents.
Recent reports have divided diffuse large B cell lymphoma (DLBCL) into germinal centre B cell-like and activated B cell-like subgroups with implicated differences in prognosis.
The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein overexpression in most follicular lymphomas. However the expression of BCL2 is not always homogeneous and may demonstrate a variable degree of heterogeneity. This study analysed BCL2 protein expression pattern in 33 cases of t(14;18)-positive follicular lymphomas using antibodies against two different epitopes (i.e. the widely used antibody BCL2/124 and an alternative antibody E17). 16/33 (49%) cases demonstrated strong BCL2 expression. In 10/33 (30%) cases, BCL2 expression was heterogeneous and in some of these, its loss appeared to be correlated with cell proliferation, as indicated by Ki67 expression. Double immunofluorescence labelling confirmed an inverse BCL2/Ki67 relationship, where in 24/28 (86%) cases cellular expression of BCL2 and Ki67 was mutually exclusive. In addition, seven BCL2 'pseudo-negative' cases were identified in which immunostaining was negative with antibody BCL2/124, but positive with antibody E17. Genomic DNA sequencing of these 'pseudo-negative' cases demonstrated eleven mutations in four cases and nine of these were missense mutations. It can be concluded that in follicular lymphomas, despite carrying the t(14;18) translocations, BCL2 protein expression may be heterogeneous and loss of BCL2 could be related to cell proliferation. Secondly, mutations in translocated BCL2 genes appear to be common and may cause BCL2 pseudo-negative immunostaining.