Displaying all 11 publications

Abstract:
Sort:
  1. Cheong SK, Lim YC, Mok KL
    Malays J Pathol, 1991 Jun;13(1):51-2.
    PMID: 1795563
    Mixed reagents for the Glucose-6-phosphate dehydrogenase (G6PD) deficiency fluorescent screening test were freeze-dried in plastic tubes. The reagents were then reconstituted with distilled water and the test was performed in the usual way. Initial testing with the freeze-dried mixed reagents gave consistent positive reaction to 12 normal blood samples and negative reaction to 9 G6PD deficient blood samples. This will enable a laboratory with freeze-drying facilities to prepare reagent tubes in bulk. As these tubes can be kept at 4 degrees C and do not require to be stored at -20 degrees C, a major laboratory can prepare these tubes and supply small laboratories for screening purposes.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis*
  2. Robinson MJ, Lau KS, Lin HP, Chan GL
    Med J Malaysia, 1976 Jun;30(4):287-90.
    PMID: 979730
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis*
  3. Nadarajan V, Shanmugam H, Sthaneshwar P, Jayaranee S, Sultan KS, Ang C, et al.
    Int J Lab Hematol, 2011 Oct;33(5):463-70.
    PMID: 21501392 DOI: 10.1111/j.1751-553X.2011.01309.x
    INTRODUCTION:
    The glucose-6-phosphate dehydrogenase (G6PD) fluorescent spot test (FST) is a useful screening test for G6PD deficiency, but is unable to detect heterozygote G6PD-deficient females. We sought to identify whether reporting intermediate fluorescence in addition to absent and bright fluorescence on FST would improve identification of mildly deficient female heterozygotes.

    METHODS:
    A total of 1266 cord blood samples (705 male, 561 female) were screened for G6PD deficiency using FST (in-house method) and a quantitative enzyme assay. Fluorescence intensity of the FST was graded as either absent, intermediate or normal. Samples identified as showing absent or intermediate fluorescence on FST were analysed for the presence of G6PD mutations using TaqMan@SNP genotyping assays and direct nucleotide sequencing.

    RESULTS:
    Of the 1266 samples, 87 samples were found to be intermediate or deficient by FST (49 deficient, 38 intermediate). Of the 49 deficient samples, 48 had G6PD enzyme activity of ≤ 9.5 U/g Hb and one sample had normal enzyme activity. All 38 intermediate samples were from females. Of these, 21 had G6PD activity of between 20% and 60%, and 17 samples showed normal G6PD activity. Twenty-seven of the 38 samples were available for mutation analysis of which 13 had normal G6PD activity. Eleven of the 13 samples with normal G6PD activity had identifiable G6PD mutations.

    CONCLUSION:
    Glucose-6-phosphate dehydrogenase heterozygote females cannot be identified by FST if fluorescence is reported as absent or present. Distinguishing samples with intermediate fluorescence from absent and bright fluorescence improves detection of heterozygote females with mild G6PD deficiency. Mutational studies confirmed that 85% of intermediate samples with normal enzyme activity had identifiable G6PD mutations.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis*
  4. Ley B, Luter N, Espino FE, Devine A, Kalnoky M, Lubell Y, et al.
    Malar J, 2015 Sep 29;14:377.
    PMID: 26416229 DOI: 10.1186/s12936-015-0896-8
    The only currently available drug that effectively removes malaria hypnozoites from the human host is primaquine. The use of 8-aminoquinolines is hampered by haemolytic side effects in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. Recently a number of qualitative and a quantitative rapid diagnostic test (RDT) format have been developed that provide an alternative to the current standard G6PD activity assays. The WHO has recently recommended routine testing of G6PD status prior to primaquine radical cure whenever possible. A workshop was held in the Philippines in early 2015 to discuss key challenges and knowledge gaps that hinder the introduction of routine G6PD testing. Two point-of-care (PoC) test formats for the measurement of G6PD activity are currently available: qualitative tests comparable to malaria RDT as well as biosensors that provide a quantitative reading. Qualitative G6PD PoC tests provide a binomial test result, are easy to use and some products are comparable in price to the widely used fluorescent spot test. Qualitative test results can accurately classify hemizygous males, heterozygous females, but may misclassify females with intermediate G6PD activity. Biosensors provide a more complex quantitative readout and are better suited to identify heterozygous females. While associated with higher costs per sample tested biosensors have the potential for broader use in other scenarios where knowledge of G6PD activity is relevant as well. The introduction of routine G6PD testing is associated with additional costs on top of routine treatment that will vary by setting and will need to be assessed prior to test introduction. Reliable G6PD PoC tests have the potential to play an essential role in future malaria elimination programmes, however require an improved understanding on how to best integrate routine G6PD testing into different health settings.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis*
  5. Azma RZ, Hidayati N, Farisah NR, Hamidah NH, Ainoon O
    PMID: 21073074
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the commonest causes of neonatal jaundice in Malaysia. Screening of cord blood for G6PD deficiency by the semiquantitative fluorescent spot test (FST) is performed in Malaysia but this test can miss cases of partial G6PD deficiency. The OSMMR-D kit assay measures G6PD activity and hemoglobin (Hb) concentration, allowing direct expression of results in U/gHb. We evaluated this method and established the normal range for G6PD activity in normal term neonates and adults. EDTA blood from 94 neonates and 295 adults (age 15-59 years old) with normal Hb and FST were selected. The normal means for G6PD activity for neonates and adults were 12.43 +/- 2.28 U/gHb and 9.21 +/- 2.6 U/gHb, respectively; the reference ranges for normal G6PD activity in neonates and adults were 10.15-14.71 U/gHb and 6.61-11.81 U/gHb respectively. There were no significant differences in mean normal G6PD activity between the Malays and Chinese racial groups or between genders. The upper and lower limit cut-off points for partial deficiency in neonates were 7.4 U/gHb (60% of the normal mean) and 2.5 U/gHb (20% of the normal mean), respectively. For adults, the upper and lower limit cut-off points for partial deficiency in adults were 5.52 U/gHb (60% of the normal mean) and 1.84 U/gHb (20% of the normal mean), respectively. The quantitation of G6PD enzymes using this OSMMR-D kit with Hb normalization was simple since the Hb was analyzed simultaneously and the results were reproducible with a CV of less than 5%.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis*
  6. Ainoon O, Boo NY, Yu YH, Cheong SK, Hamidah HN
    Hematology, 2006 Apr;11(2):113-8.
    PMID: 16753852 DOI: 10.1080/10245330500155184
    A 2-year-old Chinese boy was referred to Hospital UKM for investigation of recurrent episodes of dark-coloured urine and pallor since birth. He was born prematurely at 34 weeks gestation and developed severe early-onset neonatal jaundice requiring exchange blood transfusion. Screening at birth showed Glucose-6-phosphate dehydrogenase (G6PD) deficiency. On admission, physical examination revealed pallor, jaundice and mild hepatomegaly. Results of laboratory investigations showed a hemoglobin level of 11.0 g/dl with a hemolytic blood picture, reticulocytosis of 20% and red cell G6PD activity reported as undetectable. The patient's DNA was analysed for G6PD mutations by PCR-based techniques and DNA sequencing and results showed a 24 bp deletion of nucleotide 953-976 in the exon 9 of the G6PD gene. DNA analysis was also performed on blood samples of the patient's mother and female sibling confirming their heterozygous status, although both showed normal red cell G6PD activity levels. The patient was discharged well and his parents were appropriately advised on the condition and the importance of taking folic acid regularly. This is a first case report in Malaysia of G6PD deficiency causing chronic-hemolytic anemia. The rare 24 bp deletion causes the G6PD Nara variant, previously reported only in two other unrelated males, a Japanese and a Portuguese both with chronic hemolytic anemia.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis
  7. Ainoon O, Yu YH, Amir Muhriz AL, Boo NY, Cheong SK, Hamidah NH
    Hum Mutat, 2003 Jan;21(1):101.
    PMID: 12497642 DOI: 10.1002/humu.9103
    We performed DNA analysis using cord blood samples on 86 male Malay neonates diagnosed as G6PD deficiency in the National University of Malaysia Hospital by a combination of rapid PCR-based techniques, single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing. We found 37.2% were 871G>A (G6PD Viangchan), 26.7% were nt 563 C>T (G6PD Mediterranean) and 15.1% were 487G>A (G6PD Mahidol) followed by 4.7% 1376G>T (G6PD Canton), 3.5% 383T>C (G6PD Vanua Lava), 3.5% 592C>T (G6PD Coimbra), 2.3% 1388G>A (G6PD Kaiping), 2.3% 1360C>T (G6PD Union), 2.3% 1003G>A (G6PD Chatham), 1.2% 131C>G (G6PD Orissa) and 1.2% 1361G>A (G6PD Andalus). Seventy-one (82.6%) of the 86 G6PD-deficient neonates had neonatal jaundice. Fifty seven (80%) of the 71 neonates with jaundice required phototherapy with only one neonate progressing to severe hyperbilirubinemia (serum bilirubin >340 micromol/l) requiring exchange transfusion. There was no significant difference in the incidence of neonatal jaundice, mean serum bilirubin level, mean age for peak serum bilirubin, percentage of babies requiring phototherapy and mean number of days of phototherapy between the three common variants. In conclusion, the molecular defects of Malay G6PD deficiency is heterogeneous and G6PD Viangchan, Mahidol and Mediterranean account for at least 80% of the cases. Our findings support the observation that G6PD Viangchan and Mahidol are common Southeast Asian variants. Their presence in the Malays suggests a common ancestral origin with the Cambodians, Laotians and Thais. Our findings together with other preliminary data on the presence of the Mediterranean variant in this region provide evidence of strong Arab influence in the Malay Archipelago.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis
  8. Thriemer K, Ley B, Bobogare A, Dysoley L, Alam MS, Pasaribu AP, et al.
    Malar J, 2017 04 05;16(1):141.
    PMID: 28381261 DOI: 10.1186/s12936-017-1784-1
    The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by  the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis
  9. Ley B, Thriemer K, Jaswal J, Poirot E, Alam MS, Phru CS, et al.
    Malar J, 2017 08 10;16(1):329.
    PMID: 28797255 DOI: 10.1186/s12936-017-1981-y
    BACKGROUND: Primaquine is essential for the radical cure of vivax malaria, however its broad application is hindered by the risk of drug-induced haemolysis in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. Rapid diagnostic tests capable of diagnosing G6PD deficiency are now available, but these are not used widely.

    METHODS: A series of qualitative interviews were conducted with policy makers and healthcare providers in four vivax-endemic countries. Routine G6PD testing is not part of current policy in Bangladesh, Cambodia or China, but it is in Malaysia. The interviews were analysed with regard to respondents perceptions of vivax malaria, -primaquine based treatment for malaria and the complexities of G6PD deficiency.

    RESULTS: Three barriers to the roll-out of routine G6PD testing were identified in all sites: (a) a perceived low risk of drug-induced haemolysis; (b) the perception that vivax malaria was benign and accordingly treatment with primaquine was not regarded as a priority; and, (c) the additional costs of introducing routine testing. In Malaysia, respondents considered the current test and treat algorithm suitable and the need for an alternative approach was only considered relevant in highly mobile and hard to reach populations.

    CONCLUSIONS: Greater efforts are needed to increase awareness of the benefits of the radical cure of Plasmodium vivax and this should be supported by economic analyses exploring the cost effectiveness of routine G6PD testing.

    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis*
  10. Ainoon O, Boo NY, Yu YH, Cheong SK, Hamidah HN, Lim JH
    Malays J Pathol, 2004 Dec;26(2):89-98.
    PMID: 16329560
    We performed DNA analysis on cord blood samples of 128 Chinese male neonates diagnosed as G6PD deficiency in Hospital Universiti Kebangsaan Malaysia by a combination PCR-restriction enzyme digest technique, Single Stranded Conformation Polymorphism analysis and DNA sequencing. We found 10 different G6PD-deficient mutations exist. The two commonest alleles were G6PD Canton 1376 G>T (42.3%) and Kaiping 1388 G>A (39.4%) followed by G6PD Gaohe 592 G>A (7.0%), Chinese-5 1024 C>T, Nankang 517 T>C (1.5%), Mahidol 487 G>A (1.6%), Chatham 1003 G>T (0.8%), Union 1360 C>T (0.8%), Viangchan 871 G>A (0.8%) and Quing Yang 392 G>T (0.8%). Sixty eight percent (88/125) neonates in this study had neonatal jaundice and 29.7% developed hyperbilirubinemia >250 micromol/l. The incidence of hyperbilirubinemia >250 micromol/l was higher in G6PD Kaiping (43.8%) than G6PD Canton (22%) (p< 0.05). There was no significant difference in the incidence of neonatal jaundice, mean serum bilirubin, mean age for peak serum bilirubin, percentage of babies requiring phototherapy and mean duration of phototherapy between the two major variants. None of the 88 neonates required exchange transfusion. In conclusion we have completely characterized the molecular defects of a group of Chinese G6PD deficiency in Malaysia. The mutation distribution reflects the original genetic pool and limited ethnic admixture with indigenous Malays.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis
  11. Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, et al.
    BMC Med, 2019 08 01;17(1):151.
    PMID: 31366382 DOI: 10.1186/s12916-019-1386-6
    BACKGROUND: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax.

    METHODS: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model.

    RESULTS: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p  25% to  5 g/dL.

    CONCLUSIONS: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals.

    TRIAL REGISTRATION: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.

    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/diagnosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links