Displaying all 17 publications

Abstract:
Sort:
  1. Kimura Y, Yoshiie T, Kit WK, Maeda M, Kimura M, Tan SH
    Biosci Biotechnol Biochem, 2003 Oct;67(10):2232-9.
    PMID: 14586113
    The pollen of oil palm (Elaeis guineensis Jacq.) is a strong allergen and causes severe pollinosis in Malaysia and Singapore. In the previous study (Biosci. Biotechnol. Biochem., 64, 820-827 (2002)), from the oil palm pollens, we purified an antigenic glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. In this report, we describe the structural analysis of sugar chains linked to palm pollen glycoproteins to confirm the ubiquitous occurrence of antigenic N-glycans in the allergenic pollen. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine followed by purification with a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, electrospray ionization mass spectrometry (ESI-MS), and tandem MS analysis, as well as exoglycosidase digestions. The antigenic N-glycan bearing alpha1-3 fucose and/or beta1-2 xylose residues accounts for 36.9% of total N-glycans: GlcNAc2Man3Xyl1Fuc1GlcNAc2 (24.6%), GlcNAc2Man3Xyl1GlcNAc2 (4.4%), Man3Xyl1Fuc1-GlcNAc2 (1.1%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (5.6%), and GlcNAc1Man3Xyl1GlcNAc2 (1.2%). The remaining 63.1% of the total N-glycans belong to the high-mannose type structure: Man9GlcNAc2 (5.8%), Man8GlcNAc2 (32.1%), Man7GlcNAc2 (19.9%), Man6GlcNAc2 (5.3%).
    Matched MeSH terms: Glycoproteins/immunology
  2. Leong PK, Fung SY, Tan CH, Sim SM, Tan NH
    Acta Trop, 2015 Sep;149:86-93.
    PMID: 26026717 DOI: 10.1016/j.actatropica.2015.05.020
    The low potency of cobra antivenom has been an area of concern in immunotherapy for cobra envenomation. This study sought to investigate factors limiting the neutralizing potency of cobra antivenom, using a murine model. We examined the immunological reactivity and neutralizing potency of a Thai polyvalent antivenom against the principal toxins of Naja sumatrana (Equatorial spitting cobra) venom and two related Asiatic cobra venom α-neurotoxins. The antivenom possesses moderate neutralizing potency against phospholipases A2 (P, potency of 0.98mg/mL) and moderately weak neutralizing potency against long-chain α-neurotoxins (0.26-0.42mg/mL) but was only weakly effective in neutralizing the short-chain α-neurotoxins and cardiotoxins (0.05-0.08mg/mL). The poor neutralizing potency of the antivenom on the low molecular mass short-chain neurotoxins and cardiotoxins is presumably the main limiting factor of the efficacy of the cobra antivenom. Our results also showed that phospholipase A2, which exhibited the highest ELISA reactivity and avidity, was most effectively neutralized, whereas N. sumatrana short-chain neurotoxin, which exhibited the lowest ELISA reactivity and avidity, was least effectively neutralized by the antivenom. These observations suggest that low immunoreactivity (low ELISA reactivity and avidity) is one of the reasons for poor neutralization of the cobra venom low molecular mass toxins. Nevertheless, the overall results show that there is a lack of congruence between the immunological reactivity of the toxins toward antivenom and the effectiveness of toxin neutralization by the antivenom, indicating that there are other factors that also contribute to the weak neutralization capacity of the antivenom. Several suggestions have been put forward to overcome the low efficacy of the cobra antivenom. The use of a 'proper-mix' formulation of cobra venoms as immunogen, whereby the immunogen mixture used for hyperimmunization contains a mix of various types of α-neurotoxins and cardiotoxins in sufficient amount, may also help to improve the efficacy and broaden the neutralization spectrum of the antivenom.
    Matched MeSH terms: Glycoproteins/immunology
  3. Sugai S
    Curr Opin Rheumatol, 1992 Oct;4(5):666-71.
    PMID: 1419500
    Over the past year, many reports have been published on a variety of clinical manifestations related to antiphospholipid antibodies. The low prevalence of anticardiolipin antibodies with the rare occurrence of thrombosis and a low rate of fetal loss in studies in Malaysia and China showed a potential role for local factors. A study of cross-reactive idiotype of the anticardiolipin antibody suggested that anticardiolipin antibodies are derived from a set of natural autoreactive clones. Regarding the pathogenic role of the antiphospholipid antibody, evidence has been presented that the epitopes formed between cardiolipin and beta 2 glycoprotein I are the targets of the antiphospholipid antibody. Complement activation, abnormalities of natural anticoagulants such as protein S deficiency, and genetic association with DR4, DR7, and DRw53 have also been studied.
    Matched MeSH terms: Glycoproteins/immunology
  4. Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, et al.
    Sci Transl Med, 2012 Aug 08;4(146):146ra107.
    PMID: 22875827 DOI: 10.1126/scitranslmed.3004241
    In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease. Thus, the AGM represents a reliable disease model for vaccine and therapeutic efficacy testing. We show that vaccination of AGMs with a recombinant subunit vaccine based on the henipavirus attachment G glycoprotein affords complete protection against subsequent NiV infection with no evidence of clinical disease, virus replication, or pathology observed in any challenged subjects. Success of the recombinant subunit vaccine in nonhuman primates provides crucial data in supporting its further preclinical development for potential human use.
    Matched MeSH terms: Glycoproteins/immunology*
  5. Cheong KB, Cheong SK, Boo NY, Jemilah M, Ton SH
    Malays J Pathol, 1995 Dec;17(2):91-6.
    PMID: 8935133
    An in-house enzyme-linked immunoabsorbant assay (ELISA) for SP-A was successfully developed using in-house polyclonal anti SP-A and a commercial polyclonal anti-rabbit immunoglobulin horseradish peroxidase conjugate system. The standard curve, generated by using 50 ng of SP-A to coat the plate and 1:500 dilution of polyclonal anti SP-A as a primary antibody, was linear for concentrations of SP-A ranging from 4 micrograms/l to 4000 micrograms/l and reproducible. Results of recovery study of SP-A from a known sample of tracheal aspirate ranged from 94%-114%. Intra- and inter-assay coefficients of variations were 2.7% and 5.6% respectively for a known sample of tracheal aspirate. Interference study showed that tracheal aspirate did not interfere with the assay. The assay developed was intended to be used for SP-A measurement in tracheal aspirates obtained from neonates with and without respiratory distress syndrome.
    Matched MeSH terms: Glycoproteins/immunology
  6. Lai JY, Klatt S, Lim TS
    Crit Rev Biotechnol, 2019 May;39(3):380-394.
    PMID: 30720351 DOI: 10.1080/07388551.2019.1566206
    Through the discovery of monoclonal antibody (mAb) technology, profound successes in medical treatment against a wide range of diseases have been achieved. This has led antibodies to emerge as a new class of biodrugs. As the "rising star" in the pharmaceutical market, extensive research and development in antibody production has been carried out in various expression systems including bacteria, insects, plants, yeasts, and mammalian cell lines. The major benefit of eukaryotic expression systems is the ability to carry out posttranslational modifications of the antibody. Glycosylation of therapeutic antibodies is one of these important modifications, due to its influence on antibody structure, stability, serum half-life, and complement recruitment. In recent years, the protozoan parasite Leishmania tarentolae has been introduced as a new eukaryotic expression system. L. tarentolae is rich in glycoproteins with oligosaccharide structures that are very similar to humans. Therefore, it is touted as a potential alternative to mammalian expression systems for therapeutic antibody production. Here, we present a comparative review on the features of the L. tarentolae expression system with other expression platforms such as bacteria, insect cells, yeasts, transgenic plants, and mammalian cells with a focus on mAb production.
    Matched MeSH terms: Glycoproteins/immunology
  7. Hayati AR, Zulkarnaen M
    Int J Gynecol Pathol, 2007 Jan;26(1):83-8.
    PMID: 17197902
    Cervical carcinoma is the second leading cancer in women in Malaysia, after breast cancer. Human papillomavirus (HPV) has been implicated in the development of dysplasia or cervical intraepithelial neoplasia and progression to squamous cell carcinoma. Because of the confinement of the human papillomavirus infection within the epithelial layer, the presence of dentritic cells or Langerhans cells in epithelial layer of the ectocervix is paramount in producing immune response. The mature dentritic cells express CD83 and high CD40/80/86, whereas the immature cells express CD1a and low CD40/80/86. By identifying CD1a and CD83, theoretically, both immature and mature dentritic cell populations can be studied. In view of the facts, we investigated the infiltrating cell density of mature and immature dentritic cells in cervical neoplasia.
    Matched MeSH terms: Membrane Glycoproteins/immunology
  8. Chua CL, Chan YF, Sam IC
    J Virol Methods, 2014 Jan;195:126-33.
    PMID: 24134938 DOI: 10.1016/j.jviromet.2013.10.015
    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which has recently re-emerged globally and poses a major threat to public health. Infection leads to severe arthralgia, and disease management remains supportive in the absence of vaccines and anti-viral interventions. The high specificities of monoclonal antibodies (mAbs) have been exploited in immunodiagnostics and immunotherapy in recent decades. In this study, eight different clones of mAbs were generated and characterised. These mAbs targeted the linear epitopes on the CHIKV E2 envelope glycoprotein, which is the major target antigen during infection. All the mAbs showed binding activity against the purified CHIKV virion or recombinant E2 when analysed by immunofluorescence, ELISA and Western blot. The epitopes of each mAb were mapped by overlapping synthetic peptide-based ELISA. The epitopes are distributed at different functional domains of E2 glycoprotein, namely at domain A, junctions of β-ribbons with domains A and B, and domain C. Alignment of mAb epitope sequences revealed that some are well-conserved within different genotypes of CHIKV, while some are identical to and likely to cross-react with the closely-related alphavirus O'nyong-nyong virus. These mAbs with their mapped epitopes are useful for the development of diagnostic or research tools, including immunofluorescence, ELISA and Western blot.
    Matched MeSH terms: Glycoproteins/immunology*
  9. Das S, Sakthiswary R
    Curr Drug Targets, 2013 Dec;14(14):1667-74.
    PMID: 24354585
    Preventing osteoporotic fractures in millions of individuals may significantly reduce the associated morbidity and health-care expenditures incurred. As such, the search for newer anti-osteoporotic agents has been ongoing for years. Genetic studies have proven that the secreted protein sclerostin is one of the main culprits, which negatively regulates the bone formation. Recently, sclerostin-neutralizing monoclonal antibodies (Scl-Ab) in rodent studies have shown positive effects on bone homeostasis. An extensive search of the literature was performed in the BIOSIS, Cinahl, EMBASE, Pub- Med, Web of Science and Cochrane Library databases to evaluate the published murine studies on the effects of Scl-Ab on the bone metabolism and histomorphometric parameters. Our systematic review depicts a significant association between Scl-Ab administration and improvement in bone formation, bone density, bone volume and trabecular thickness.
    Matched MeSH terms: Glycoproteins/immunology
  10. Ong SG, Cheng HM, Soon SC, Goh E, Chow SK, Yeap SS
    Clin Rheumatol, 2002 Sep;21(5):382-5.
    PMID: 12223986 DOI: 10.1007/s100670200102
    The aim of this study was to investigate the incidence of IgG anticardiolipin antibody (ACL) and IgG anti-beta(2) glycoprotein I antibody (anti-beta2GPI) positivity in patients with primary or secondary antiphospholipid syndrome (APS) and systemic lupus erythematosus (SLE), to assess the association between IgG ACL and anti-beta2GPI, and the relationship between the presence of ACL and anti-beta2GPI with the clinical manifestations of APS. IgG ACL and IgG anti-beta2GPI levels were measured in 51 SLE patients, 20 patients with SLE and APS (secondary APS) and 11 primary APS patients using commercially available ELISA kits. Relationships between laboratory data and clinical manifestations of the patients were examined. The incidence of IgG ACL positivity was significantly higher in primary (36.4%) and secondary (40%) APS than in SLE (13.7%) patients (P = 0.02). The incidence of IgG anti-beta2GPI positivity was significantly higher in primary (54.5%) and secondary (35%) APS than in SLE (7.8%) patients (P = 0.0006). Mean levels of IgG ACL and anti-beta2GPI were significantly higher in the primary and secondary APS than in the SLE patients (P = 0.002 for both). A significant relationship was found between IgG ACL and IgG anti-beta2GPI (P = 0.01, R(2) = 0.56). There was a significant correlation between the presence of IgG ACL and a history of thrombosis in the combined primary and secondary APS group, but not in SLE patients. In conclusion, in this study IgG ACL and IgG anti-beta2GPI are closely related and mean levels of IgG ACL and IgG anti-beta2GPI are higher in patients with either primary or secondary APS than in SLE patients.
    Study site: Rheumatology Clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Glycoproteins/immunology*
  11. Bande F, Arshad SS, Bejo MH, Moeini H, Omar AR
    J Immunol Res, 2015;2015:424860.
    PMID: 25954763 DOI: 10.1155/2015/424860
    Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.
    Matched MeSH terms: Glycoproteins/immunology
  12. Lew MH, Lim RL
    Appl Microbiol Biotechnol, 2016 Jan;100(2):661-71.
    PMID: 26411458 DOI: 10.1007/s00253-015-6953-y
    Current diagnostic tools for peanut allergy using crude peanut extract showed low predictive value and reduced specificity for detection of peanut allergen-specific immunoglobulin E (IgE). The Ara h 2.02, an isoform of the major peanut allergen Ara h 2, contains three IgE epitope recognition sequence of 'DPYSPS' and may be a better reagent for component resolve diagnosis. This research aimed to generate a codon-optimised Ara h 2.02 gene for heterologous expression in Escherichia coli and allergenicity study of this recombinant protein. The codon-optimised gene was generated by PCR using overlapping primers and cloned into the pET-28a (+) expression vector. Moderate expression of a 22.5 kDa 6xhistidine-tagged recombinant Ara h 2.02 protein (6xHis-rAra h 2.02) in BL21 (DE3) host cells was observed upon induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The insoluble recombinant protein was purified under denaturing condition using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography and refolded by dialysis in decreasing urea concentration, amounting to a yield of 74 mg/l of expression culture. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) and immunoblot analysis confirmed the production of the recombinant 6xHis-rAra h 2.02. The refolded recombinant 6xHis-rAra h 2.02, with or without adjuvant, was able to elicit comparable level of allergen-specific IgE and IgG1 in sensitised Balb/c mice. In addition, the specific IgE antibodies raised against the recombinant protein were able to recognise the native Ara h 2 protein, demonstrating its allergenicity and potential as a reagent for diagnosis and therapeutic study.
    Matched MeSH terms: Glycoproteins/immunology*
  13. Mohd-Lila MA, Yee LK, Cen LS, Bala JA, Balakrishnan KN, Allaudin ZN, et al.
    Microb Pathog, 2019 Sep;134:103572.
    PMID: 31163251 DOI: 10.1016/j.micpath.2019.103572
    The common physical and chemical methods for controlling rat pest are less than satisfactory and inhumane. Immunocontraception approach has been considered more humane and it can be accomplished by inducing the relevant host immune response that block further development of reproductive gametes. ZP3 proteins are known to play very important role during sperm-ovum fertilization. It is a self-antigen and only localized in female ovaries. Therefore, an immunization with ZP3 protein elsewhere will induce a generalize host immune response against ZP3 protein. This study employed rat ZP3 (rZP3) gene prepared from its cDNA of Rattus rattus diardii. It was delivered and expressed in vivo by naked plamid DNA (DrZP3) or recombinant ZP3-Adenovirus (Ad-rZP3). Expression studies in vitro with DrZP3 or Ad-ZP3 showed rZP3 proteins were successfully expressed in Vero cells. Hyperimmune serum against rZP3 that were prepared by immunizing several rats with purified rZP3-pichia yeast fusion protein showed it blocked sperms from binding DrZP3-transfected Vero cells. Female Sprague Dawley rats immunized with DrZP3 demonstrated a long-term effect for significant reduction of fertility up to 92.6%. Ovaries from rats immunized with DrZP3 were severely atrophied with disappearance of primordial follicles from ovarian cortex with an increased in the amount of oocyte-free cell clusters. Female rats immunized with Ad-rZP3 demonstrated 27% reduction of fertility. The infertility induced by Ad-rZP3 is comparatively low and ineffective. This could be due to a strong host immune response that suppresses the recombinant virus itself resulted in minimum rZP3 protein presentation to the host immune system. As a result, low antibody titers produced against rZP3 is insufficient to block oocytes from maturity and fertilization. Therefore, immunization with DrZP3 for immunocontraception is more effective than Ad-rZP3 recombinant adenovirus. It is proposed to explore further on the use of adenovirus or other alternative viruses to deliver ZP3 protein and for the development of enhanced expression of rZP3 in target host.
    Matched MeSH terms: Zona Pellucida Glycoproteins/immunology*
  14. Bu W, Joyce MG, Nguyen H, Banh DV, Aguilar F, Tariq Z, et al.
    Immunity, 2019 05 21;50(5):1305-1316.e6.
    PMID: 30979688 DOI: 10.1016/j.immuni.2019.03.010
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with epithelial-cell cancers and B cell lymphomas. An effective EBV vaccine is not available. We found that antibodies to the EBV glycoprotein gH/gL complex were the principal components in human plasma that neutralized infection of epithelial cells and that antibodies to gH/gL and gp42 contributed to B cell neutralization. Immunization of mice and nonhuman primates with nanoparticle vaccines that displayed components of the viral-fusion machinery EBV gH/gL or gH/gL/gp42 elicited antibodies that potently neutralized both epithelial-cell and B cell infection. Immune serum from nonhuman primates inhibited EBV-glycoprotein-mediated fusion of epithelial cells and B cells and targeted an epitope critical for virus-cell fusion. Therefore, unlike the leading EBV gp350 vaccine candidate, which only protects B cells from infection, these EBV nanoparticle vaccines elicit antibodies that inhibit the virus-fusion apparatus and provide cell-type-independent protection from virus infection.
    Matched MeSH terms: Membrane Glycoproteins/immunology*
  15. Basabaeen AA, Abdelgader EA, BaHashwan OS, Babekir EA, Abdelateif NM, Bamusa SA, et al.
    BMC Res Notes, 2019 May 23;12(1):282.
    PMID: 31122288 DOI: 10.1186/s13104-019-4319-8
    OBJECTIVE: To investigate the ZAP-70 and CD38 expressions and their combined expressions in Sudanese B-CLL patients and their relationships with clinical and hematological characteristics as well as the disease staging at presentation.

    RESULTS: In the present cross-sectional descriptive study, analysis of ZAP-70 expression showed that 36/110 (32.7%) patients positively expressed ZAP-70 and insignificant higher presentation in intermediate and at advanced stages as well as no correlation was seen with hematological parameters and clinical features compared with negatively ZAP-70, on the other hand, 41/110 (37.3%) were CD38+ and no significant correlation was shown with the stage at presentation, clinical characteristics (except Splenomegaly, P = 0.02) and hematological parameters. However, in combined expressions of both ZAP-70 and CD38 together, 20/110 (18.2%) were concordantly ZAP-70+/CD38+, 53/110 (48.2%) concordantly ZAP-70-/CD38- and 37/110 (33.6%) either ZAP-70+ or CD38+, and these three groups showed insignificant correlation with clinical (except Splenomegaly, P = 0.03) and hematological parameters, and the stage at presentation. Our data showed the combined analysis of these two markers, lead to classify our patients into three subgroups (either concordant positive, negative or discordant expressions) with statistically insignificant correlation with clinical presentation (except Splenomegaly), hematological parameters and stage at presentation of B-CLL patients.

    Matched MeSH terms: Membrane Glycoproteins/immunology
  16. Castaño-Rodríguez N, Kaakoush NO, Pardo AL, Goh KL, Fock KM, Mitchell HM
    Hum Immunol, 2014 Aug;75(8):808-15.
    PMID: 24929142 DOI: 10.1016/j.humimm.2014.06.001
    Gastric cancer (GC) is a progressive process initiated by Helicobacter pylori-induced inflammation. Initial recognition of H. pylori involves Toll-like receptors (TLRs), central molecules in the host inflammatory response. Here, we investigated the association between novel polymorphisms in genes involved in the TLR signalling pathway, including TLR2, TLR4, LBP, MD-2, CD14 and TIRAP, and risk of H. pylori infection and related GC.
    Matched MeSH terms: Membrane Glycoproteins/immunology
  17. Bhattachary-Chatterjee M, Nath Baral R, Chatterjee SK, Das R, Zeytin H, Chakraborty M, et al.
    Cancer Immunol Immunother, 2000 Jun;49(3):133-41.
    PMID: 10881692
    Anti-idiotype (Id) vaccine therapy has been tested and shown to be effective, in several animal models, for triggering the immune system to induce specific and protective immunity against bacterial, viral and parasitic infections. The administration of anti-Id antibodies as surrogate tumor-associated antigens (TAA) also represents another potential application of the concept of the Id network. Limited experience in human trials using anti-Id to stimulate immunity against tumors has shown promising results. In this "counter-point" article, we discuss our own findings showing the potential of anti-Id antibody vaccines to be novel therapeutic approaches to various human cancers and also discuss where anti-Id vaccines may perform better than traditional multiple-epitope antigen vaccines.
    Matched MeSH terms: Glycoproteins/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links