Displaying all 7 publications

Abstract:
Sort:
  1. Abdelrasoul M, El-Fattah AA, Kotry G, Ramadan O, Essawy M, Kamaldin J, et al.
    Oral Dis, 2023 Nov;29(8):3583-3598.
    PMID: 35839150 DOI: 10.1111/odi.14314
    BACKGROUND: Periodontal regenerative therapy using bone-substituting materials has gained favorable clinical significance in enhancing osseous regeneration. These materials should be biocompatible, osteogenic, malleable, and biodegradable. This study assessed the periodontal regenerative capacity of a novel biodegradable bioactive hydrogel template of organic-inorganic composite loaded with melatonin.

    MATERIALS AND METHODS: A melatonin-loaded alginate-chitosan/beta-tricalcium phosphate composite hydrogel was successfully prepared and characterized. Thirty-six critical-sized bilateral class II furcation defects were created in six Mongrel dogs, and were randomly divided and allocated to three cohorts; sham, unloaded composite, and melatonin-loaded. Periodontal regenerative capacity was evaluated via histologic and histomorphometric analysis.

    RESULTS: Melatonin-treated group showed accelerated bone formation and advanced maturity, with a significant twofold increase in newly formed inter-radicular bone compared with the unloaded composite. The short-term regenerative efficacy was evident 4 weeks postoperatively as a significant increase in cementum length concurrent with reduction of entrapped epithelium. After 8 weeks, the scaffold produced a quality of newly synthesized bone similar to normal compact bone, with potent periodontal ligament attachment.

    CONCLUSIONS: Melatonin-loaded hydrogel template accelerated formation and enhanced quality of newly formed bone, allowing complete periodontal regeneration. Furthermore, the scaffold prevented overgrowth and entrapment of epithelial cells in furcation defects.

    Matched MeSH terms: Guided Tissue Regeneration, Periodontal
  2. Jamuna-Thevi K, Saarani NN, Abdul Kadir MR, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2014 Oct;43:253-63.
    PMID: 25175212 DOI: 10.1016/j.msec.2014.07.028
    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents.
    Matched MeSH terms: Guided Tissue Regeneration, Periodontal*
  3. Saravanan P, Ramakrishnan T, Ambalavanan N, Emmadi P, John TL
    J Oral Implantol, 2013 Aug;39(4):455-62.
    PMID: 23964779 DOI: 10.1563/AAID-JOI-D-10-00211
    The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients.
    Matched MeSH terms: Guided Tissue Regeneration, Periodontal/methods*
  4. Kamil W, Al Bayati L, Hussin AS, Hassan H
    J Med Case Rep, 2015;9:211.
    PMID: 26404671 DOI: 10.1186/s13256-015-0677-6
    Aggressive periodontitis is characterized by a rapid rate of attachment loss and bone resorption. Regenerative therapy offers reconstruction of the periodontium; however, certain advanced cases with a questionable prognosis might remain a challenge. We report a successful intervention outcome of a challenging case in the aesthetic zone of a patient with aggressive periodontitis.
    Matched MeSH terms: Guided Tissue Regeneration, Periodontal/methods*
  5. Malhotra N
    Curr Stem Cell Res Ther, 2019;14(4):351-366.
    PMID: 30636614 DOI: 10.2174/1574888X14666190111105504
    OBJECTIVES: A variety of bioreactors and related approaches have been applied to dental tissues as their use has become more essential in the field of regenerative dentistry and dental tissue engineering. The review discusses the various types of bioreactors and their potential application in dentistry.

    METHODS: Review of the literature was conducted using keywords (and MeSH) like Bioreactor, Regenerative Dentistry, Fourth Factor, Stem Cells, etc., from the journals published in English. All the searched abstracts, published in indexed journals were read and reviewed to further refine the list of included articles. Based on the relevance of abstracts pertaining to the manuscript, full-text articles were assessed.

    RESULTS: Bioreactors provide a prerequisite platform to create, test, and validate the biomaterials and techniques proposed for dental tissue regeneration. Flow perfusion, rotational, spinner-flask, strain and customize-combined bioreactors have been applied for the regeneration of bone, periodontal ligament, gingiva, cementum, oral mucosa, temporomandibular joint and vascular tissues. Customized bioreactors can support cellular/biofilm growth as well as apply cyclic loading. Center of disease control & dip-flow biofilm-reactors and micro-bioreactor have been used to evaluate the biological properties of dental biomaterials, their performance assessment and interaction with biofilms. Few case reports have also applied the concept of in vivo bioreactor for the repair of musculoskeletal defects and used customdesigned bioreactor (Aastrom) to repair the defects of cleft-palate.

    CONCLUSIONS: Bioreactors provide a sterile simulated environment to support cellular differentiation for oro-dental regenerative applications. Also, bioreactors like, customized bioreactors for cyclic loading, biofilm reactors (CDC & drip-flow), and micro-bioreactor, can assess biological responses of dental biomaterials by simultaneously supporting cellular or biofilm growth and application of cyclic stresses.

    Matched MeSH terms: Guided Tissue Regeneration, Periodontal*
  6. Qasim SSB, Nogueria LP, Fawzy AS, Daood U
    AAPS PharmSciTech, 2020 Jun 16;21(5):173.
    PMID: 32548717 DOI: 10.1208/s12249-020-01708-x
    Innovative strategies for periodontal regeneration have been the focus of research clusters across the globe for decades. In order to overcome the drawbacks of currently available options, investigators have suggested a novel concept of functionally graded membrane (FGM) templates with different structural and morphological gradients. Chitosan (CH) has been used in the past for similar purpose. However, the composite formulation of composite and tetracycline when cross-linked with glutaraldehyde have received little attention. Therefore, the purpose of the study was to investigate the drug loading and release characteristics of novel freeze gelated chitosan templates at different percentages of glutaraldehyde. These were cross-linked with 0.1 and 1% glutaraldehyde and loaded with doxycycline hyclate. The electron micrographs depicted porous morphology of neat templates. After cross-linking, these templates showed compressed ultrastructures. Computerized tomography analysis showed that the templates had 88 to 92% porosity with average pore diameter decreased from 78 to 44.9 μm with increasing concentration. Fourier transform infrared spectroscopy showed alterations in the glycosidic segment of chitosan fingerprint region which after drug loading showed a dominant doxycycline spectral composite profile. Interestingly, swelling profile was not affected by cross-linking either at 0.1 and 1% glutaraldehyde and template showed a swelling ratio of 80%, which gained equilibrium after 15 min. The drug release pattern also showed a 40 μg/mL of release after 24 h. These doxycycline-loaded templates show their tendency to be used in a functionally graded membrane facing the defect site.
    Matched MeSH terms: Guided Tissue Regeneration, Periodontal/methods*
  7. Berahim Z, Moharamzadeh K, Rawlinson A, Jowett AK
    J. Periodontol., 2011 May;82(5):790-7.
    PMID: 21080786 DOI: 10.1902/jop.2010.100533
    Cell-based therapy using autologous cells has been suggested as a potential approach for periodontal tissue regeneration. Spheroid systems are a form of three-dimensional cell culture that promotes cell matrix interaction, which could recapitulate the aspect of cell homeostasis in vivo. The aim of this study is to assess the interaction of periodontal fibroblast spheroids with synthetic and collagen-based membranes that have been used in guided tissue regeneration.
    Matched MeSH terms: Guided Tissue Regeneration, Periodontal/instrumentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links