BACKGROUND: Despite many advantages, leadless pacemakers are currently only capable of single-chamber ventricular pacing.
METHODS: The prospective MARVEL 2 (Micra Atrial tRacking using a Ventricular accELerometer 2) study assessed the performance of an automated, enhanced accelerometer-based algorithm downloaded to the Micra leadless pacemaker for up to 5 h in patients with AV block. The primary efficacy objective was to demonstrate the superiority of the algorithm to provide AV synchronous (VDD) pacing versus VVI-50 pacing in patients with sinus rhythm and complete AV block. The primary safety objective was to demonstrate that the algorithm did not result in pauses or heart rates of >100 beats/min.
RESULTS: Overall, 75 patients from 12 centers were enrolled; an accelerometer-based algorithm was downloaded to their leadless pacemakers. Among the 40 patients with sinus rhythm and complete AV block included in the primary efficacy objective analysis, the proportion of patients with ≥70% AV synchrony at rest was significantly greater with VDD pacing than with VVI pacing (95% vs. 0%; p
METHODS AND RESULTS: The primary outcome (risk of cardiac failure, pacemaker syndrome, or syncope related to the Micra system or procedure) was compared between successfully implanted patients from the Micra IDE trial with a primary pacing indication associated with AF or history of AF (AF group) and those without (non-AF group). Among 720 patients successfully implanted with Micra, 228 (31.7%) were in the non-AF group. Reasons for selecting VVI pacing in non-AF patients included an expectation for infrequent pacing (66.2%) and advanced age (27.2%). More patients in the non-AF group had a condition that precluded the use of a transvenous pacemaker (9.6% vs. 4.7%, P = 0.013). Atrial fibrillation patients programmed to VVI received significantly more ventricular pacing compared to non-AF patients (median 67.8% vs. 12.6%; P
METHODS: Between January 2013 and June 2015, a total of 116 patients underwent arterial switch operation. Of the 116 patients, 26 with TGA-IVS underwent primary arterial switch operation at more than 30 days of age.
RESULTS: The age and body weight (mean ± SD) at the operation were 120.4 ± 93.8 days and 4.1 ±1.0 kg, respectively. There was no hospital mortality. The thickness of posterior LV wall (preoperation vs postoperation; mm) was 4.04 ± 0.71 versus 5.90 ± 1.3; P < .0001; interval: 11.8 ± 6.5 days. The left atrial pressure (mm Hg; postoperative day 0 vs 3) was 20.0 ± 3.2 versus 10.0 ± 2.0; P < .0001; and the maximum blood lactate level (mmol/dL) was 4.7 ± 1.4 versus 1.4 ± 0.3; P < .0001, which showed significant improvement in the postoperative course. All cases had delayed sternal closure. The patients who belonged to the thin LV posterior wall group (<4 mm [preoperative echo]: n = 13) had significantly longer ventilation time (days; 10.6 ± 4.8 vs 4.8 ± 1.7, P = .0039), and the intensive care unit stay (days) was 14 ± 9.2 versus 7.5 ± 3.5; P = .025, compared with thick LV wall group (≥4.0 mm: n = 13).
CONCLUSIONS: The children older than 30 days with TGA-IVS can benefit from primary arterial switch operation with acceptable results under our indication. However, we need further investigation for LV function.
OBJECTIVE: The purpose of this study was to identify predictors of A4 amplitude and high AVS.
METHODS: We analyzed 64 patients enrolled in MARVEL 2 who had visible P waves on electrocardiogram for assessing A4 amplitude and 40 patients with third-degree AV block for assessing AVS at rest. High AVS was defined as >90% correct atrial-triggered ventricular pacing. The association between clinical factors and echocardiographic parameters with A4 amplitude was investigated using a multivariable model with lasso variable selection. Variables associated with A4 amplitude together with premature ventricular contraction burden, sinus rate, and sinus rate variability (standard deviation of successive differences of P-P intervals [SDSD]) were assessed for association with AVS.
RESULTS: In univariate analysis, low A4 amplitude was inversely related to atrial function assessed by E/A ratio and e'/a' ratio, and was directly related to atrial contraction excursion (ACE) and atrial strain (Ɛa) on echocardiography (all P ≤.05). The multivariable lasso regression model found coronary artery bypass graft history, E/A ratio, ACE, and Ɛa were associated with low A4 amplitude. E/A ratio and SDSD were multivariable predictors of high AVS, with >90% probability if E/A <0.94 and SDSD <5 bpm.
CONCLUSION: Clinical parameters and echocardiographic markers of atrial function are associated with A4 signal amplitude. High AVS can be predicted by E/A ratio <0.94 and low sinus rate variability at rest.
METHODS: All Apical HCM patients coming for clinic visits at the Institut Jantung Negara from September 2017 to September 2018 were included. We assessed their echocardiography images, grade their diastolic function and reviewed their ECG on presentation.
RESULTS: Fifty patient were included, 82% (n=41) were males and 18% (n=9) females. The diastolic function grading of 37 (74%) patients were able to be determined using the updated 2016 American Society of Echocardiography (ASE) diastolic guidelines. Fifty percent (n=25) had the typical ace-ofspades shape left ventricle (LV) appearance in diastole and 12% (n=6) had apical pouch. All patients had T inversion in the anterior leads of their ECG, and only 52% (n=26) fulfilled the ECG left ventricular hypertrophy (LVH) criteria. Majority of our patients presented with symptoms of chest pain (52%, n=26) and dyspnoea (42%, n=21).
CONCLUSION: The updated 2016 ASE guideline makes it easier to evaluate LV diastolic function in most patients with Apical HCM. It also helps in elucidating the aetiology of dyspnoea, based on left atrial pressure. Clinicians should have a high index of suspicion for Apical HCM when faced with deep T inversion on ECG, in addition to a thick LV apex with an aceof- spades appearance during diastole.