Horseshoe crabs are among the most studied invertebrates due to their unique, innate immune system and biological processes. The metabolomics study was conducted on lipopolysaccharide (LPS)-stimulated and non-stimulated hemocytes isolated from the Malaysian Tachypleus gigas and Carcinoscorpius rotundicauda. LC-TOF-MS, multivariate analyses, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) were included in this study to profile the metabolites. A total of 37 metabolites were identified to be differentially abundant and were selected based on VIP > 1. However, of the 37 putative metabolites, only 23 were found to be significant with ANOVA at p
Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS). The high-throughput sequencing resulted in 352,077,208 and 386,749,136 raw reads corresponding to 282,490,910 and 305,709,830 high-quality mappable reads for the control and LPS-treated hemocyte samples, respectively. Based on the log-fold change of > 0.3 or
It is well known that exosomes could serve as anti-microbial immune factors in animals. However, despite growing evidences have shown that the homeostasis of the hemolymph microbiota was vital for immune regulation in crustaceans, the relationship between exosomes and hemolymph microbiota homeostasis during pathogenic bacteria infection has not been addressed. Here, we reported that exosomes released from Vibrio parahaemolyticus-infected mud crabs (Scylla paramamosain) could help to maintain the homeostasis of hemolymph microbiota and have a protective effect on the mortality of the host during the infection process. We further confirmed that miR-224 was densely packaged in these exosomes, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex, then the released TRAF6 further interacted with Ecsit to regulate the production of mitochondrial ROS (mROS) and the expression of Anti-lipopolysaccharide factors (ALFs) in recipient hemocytes, which eventually affected hemolymph microbiota homeostasis in response to the pathogenic bacteria infection in mud crab. To the best of our knowledge, this is the first document that reports the role of exosome in the hemolymph microbiota homeostasis modulation during pathogen infection, which reveals the crosstalk between exosomal miRNAs and innate immune response in crustaceans.
Classical characteristic of the innate immune system is the lack of ability to build up immunological memory, contrast to the adaptive immune system that is capable of "remembering" antigens, and rapidly mount a greater magnitude of immune response upon subsequent exposure to the same antigens. Peculiarly, immunological memory of innate immunity is evidenced in invertebrates. At least three different memory phenomena have been described, namely sustained unique response, recalled response, and immune shift. Studies attended to decipher the mechanistic biology of the innate immune memory reveals the role of epigenetics, which modulates the response of immune memory, and the heritability of immune memory to subsequent generations. A parthenogenetic Artemia model demonstrated successful transgenerational epigenetic inheritance of resistance trait against Vibrio campbellii. Following, the role of invertebrate hemocytes and Down syndrome cell adhesion molecule (Dscam) in innate immune memory is reviewed. While there is no vertebrate antibody homolog found in invertebrates, Dscam was found to resemble the functionality of vertebrate antibody. Insight of Dscam as immune factor was illustrated further in the current review.
A total of six wild broodstocks of tiger prawns, Penaeus monodon, were found positive for White Spot Virus (WSV) with an IQ2000 detection kit. Using histopathology, the intranuclear inclusion of haemocyte due to WSV infection was observed in the epithelium cells of the antennal gland, stomach and gills. This result confirmed that the wild broodstocks were positive with WSV without showing any white spot. Additionally, histopathological examination also revealed an accumulation of haemocytes around the hepatopancreatic tubules resulting from bacterial infection. Encapsulation and nodule formation, as well as related necrosis, were also observed around the hepatopancreatic tubules infected with a metazoan parasite. Encysted tylocephalum larval cestodes were observed in the hepatopancreas, with haemocytic aggregation being observed around the infected tubules. These findings showed some bacterial and parasitic infections which, in addition to the viral infection itself, could contribute to the 80% mortality rate in wild broodstocks infected with WSV.
One of the major steps in the innate immune response of shrimp includes the activation of serine proteinases of the pro-phenoloxidase pathway by the prophenoloxidase activation enzyme (PPAF). In this study, the cDNA encoding a serine proteinase homologue (SPH) with prophenoloxidase activating activity of Penaeus monodon (PmPPAF) was cloned and characterized. PmPPAF cDNA consists of 1444 nucleotides encoding a protein with 394 amino acid residues. The estimated molecular weight of PmPPAF is 43.5 kDa with an isoelectric point of 5.19. PmPPAF consists of a signal peptide, a CLIP domain and a carboxyl-terminal trypsin-like serine protease domain. It is highly similar to the masquerade-like protein 2A (61% similarity) of the crayfish Pacifastacus leniusculus, other serine proteases (42.9-67% identity) of P. monodon, and the PPAF of the crab (61% similarity). Unlike other SPH of P. monodon, which express mainly in the hemocytes, PmPPAF transcripts were detected in the hemocytes, eyestalk, hypodermis, gill, swimming leg and brain. Similar to the crab PPAF, PmPPAF transcript level is high in shrimp at the premolt stages and PmPPAF expression is up-regulated in shrimp infected with white spot syndrome virus (WSSV). Gene silencing of PmPPAF decreased expression of a prophenoloxidase-like gene and injection of Anti-PmPPAF antibody causes a decrease in PO activity. Taken together, these results provided evidence that PmPPAF is a serine proteinase homologue, and is involved in the pro-PO activation pathway of the shrimp innate immune system.
Considering the importance of heat shock proteins (HSPs) in the innate immune system of prawn, a comparative molecular approach was proposed to study the crustacean large HSPs 60, 70 and 90. Three different large HSPs were identified from freshwater prawn Macrobrachium rosenbergii (Mr) cDNA library during screening. The structural and functional characteristic features of HSPs were studied using various bioinformatics tools. Also, their gene expression and mRNA regulation upon various pathogenic infections was studied by relative quantification using 2(-ΔΔCT) method. MrHSP60 contains a long chaperonin 60 domain at 46-547 which carries a chaperonin 60 signature motif between 427 and 438, whereas MrHSP70 contains a long HSP70 domain at 21-624 and MrHSP90 carries a HSP90 domain at 188-719. The two dimensional analysis showed that MrHSP60 contains more amino acids (52%) in helices, whereas MrHSP70 (40.6%) and MrHSP90 (51.8%) carried more residues in coils. Gene expression results showed significant (P
Despite the importance of innate immunity in invertebrates, the diversity and function of innate immune cells in invertebrates are largely unknown. Using single-cell RNA-seq, we identified prohemocytes, monocytic hemocytes, and granulocytes as the three major cell-types in the white shrimp hemolymph. Our results identified a novel macrophage-like subset called monocytic hemocytes 2 (MH2) defined by the expression of certain marker genes, including Nlrp3 and Casp1. This subtype of shrimp hemocytes is phagocytic and expresses markers that indicate some conservation with mammalian macrophages. Combined, our work resolves the heterogenicity of hemocytes in a very economically important aquatic species and identifies a novel innate immune cell subset that is likely a critical player in the immune responses of shrimp to threatening infectious diseases affecting this industry.