Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Pamidi N, Nayak S
    Biomed J, 2014 Jul-Aug;37(4):225-31.
    PMID: 25116719 DOI: 10.4103/2319-4170.125651
    BACKGROUND: Environmental enrichment (EE) exposure is known to influence the structural changes in the neuronal network of hippocampus. In the present study, we evaluated the effects of EE exposure on the streptozotocin (STZ)-induced diabetic and stressed rat hippocampus.
    METHODS: Male albino rats of Wistar strain (4-5 weeks old) were grouped into normal control (NC), vehicle control (VC), diabetes (DI), diabetes + stress (DI + S), diabetes + EE (DI + E), and diabetes + stress + EE (DI + S + E) groups (n = 8 in each group). Rats were exposed to stress and EE after inducing diabetes with STZ (40 mg/kg). Rats were sacrificed on Day 30 and brain sections were processed for cresyl violet staining to quantify the number of surviving neurons in the CA1, CA3, and dentate hilus (DH) regions of hippocampus.
    RESULTS: A significant (p < 0.001) decrease in the number of survived neurons was noticed in DI (CA1, 34.06 ± 3.2; CA3, 36.1 ± 3.62; DH, 9.83 ± 2.02) as well as DI + S (CA1, 14.03 ± 3.12; CA3, 20.27 ± 4.09; DH, 6.4 ± 1.21) group rats compared to NC rats (CA1, 53.64 ± 2.96; CA3, 62.1 ± 3.34; DH, 21.11 ± 1.03). A significant (p < 0.001) increase in the number of survived neurons was observed in DI + E (CA1, 42.3 ± 3.66; CA3, 46.73 ± 4.74; DH, 17.03 ± 2.19) and DI + S + E (CA1, 29.69 ± 4.47; CA3, 36.73 ± 3.89; DH, 12.23 ± 2.36) group rats compared to DI and DI + S groups, respectively.
    CONCLUSIONS: EE exposure significantly reduced the amount of neuronal damage caused by complications of diabetes and stress to the neurons of hippocampus.
    Matched MeSH terms: Hippocampus/drug effects
  2. Gadahad MR, Rao M, Rao G
    J Chin Med Assoc, 2008 Jan;71(1):6-13.
    PMID: 18218554
    BACKGROUND: Centella asiatica (CeA) is a creeper, growing in moist places in India and other Asian countries. Leaves of CeA are used for memory enhancement in the Ayurvedic system of medicine, an alternate system of medicine in India. In the present study, we investigated the role of CeA fresh leaf extract treatment on the dendritic morphology of hippocampal CA3 neurons, one of the regions concerned with learning and memory, in adult rats.

    METHODS: In the present study, adult rats (2.5 months old) were fed with 2, 4 and 6 mL/kg body weight of fresh leaf extract of CeA for 2, 4 and 6 weeks, respectively. After the treatment period, the rats were killed, brains were removed and hippocampal neurons were impregnated with silver nitrate (Golgi staining). Hippocampal CA3 neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization) and intersections (a measure of dendritic length) were quantified. These data were compared with those of age-matched control rats.

    RESULTS: The results showed a significant increase in the dendritic length (intersections) and dendritic branching points along the length of both apical and basal dendrites in rats treated with 6 mL/kg body weight/day of CeA for 6 weeks. However, the rats treated with 2 and 4 mL/kg body weight/day for 2 and 4 weeks did not show any significant change in hippocampal CA3 neuronal dendritic arborization.

    CONCLUSION: We conclude that constituents present in Centella asiatica fresh leaf extract has neuronal dendritic growth-stimulating properties.

    Matched MeSH terms: Hippocampus/drug effects*
  3. Mitra NK, Nadarajah VD, Siong HH
    Folia Neuropathol, 2009;47(1):60-8.
    PMID: 19353435
    Dermal absorption of chlorpyrifos (CPF), an organophosphate (OP) pesticide, is important because of its popular use. Stress has been reported to exacerbate neurotoxic effects of certain OP pesticides; however, quantitative studies to corroborate this are not reported. This study correlates the changes in acetylcholinesterase (AChE) levels and neuronal counts in areas of the hippocampus to consecutive exposure of stress, heat and CPF. Male mice (60 days) were segregated into six groups: one control, one stress control, and four treated groups (n=10). CPF was applied in doses of 1/2 and 1/5 of dermal LD50 (E1 and E2) over the tail of mice under occlusive bandages for 3 weeks. Stress control [(s) C] mice were subjected to swim stress at 38 degrees C (6 mins/day, 3 weeks). (s) E1 and (s) E2 were subjected to swim stress before CPF application. Blood and brain AChE levels were estimated using a spectrofluorometric method (Amplex Red). Pyramidal neurons of the cornu ammonis of the hippocampus under Nissl stain from histological sections were counted per unit area of section and analyzed statistically using one way ANOVA. Swim stress at 38 degrees C aggravated reduction of serum AChE by dermal exposure to CPF by 19.7%. Neurons of CA3 and CA1 regions of the hippocampus showed significant reduction in neuronal counts in (s) E1 and (s) E2 groups compared to E1 and E2 groups. Whereas application of CPF 1/2 dermal LD50 (E1) showed significant reduction of neuronal counts only in the CA3 area.
    Matched MeSH terms: Hippocampus/drug effects*
  4. Mitra NK, Siong HH, Nadarajah VD
    Ann Agric Environ Med, 2008;15(2):211-6.
    PMID: 19061257
    Dermal absorption of chlorpyrifos, an organophosphate insecticide is important because of its use in agriculture and control of household pests. The objectives of this study are to investigate firstly, the biochemical changes in the blood and secondly, histomorphometric changes in the hippocampus of adult mice following dermal application of chlorpyrifos in sub-toxic doses. Male Swiss albino mice (60 days) were segregated into one control and two treated groups (n=10). Chlorpyrifos, diluted with xylene, was applied in doses of 1/2 of LD(50) (E1) and 1/5 of LD(50) (E2) over the tail of mice of the two treated groups, 6 hours daily for 3 weeks. AChE levels in the serum and brain were estimated using a spectrophotometric method (Amplex Red reagent). Coronal serial sections were stained with 0.2 % thionin in acetate buffer and pyramidal neurons of Cornu Ammonis of hippocampus were counted at 400x magnification using Image Pro Express software. At the end of 3 weeks, body weights were reduced significantly in E1 group. Serum AChE concentrations were reduced by 97 % in E1 and 74 % in E2 groups compared to controls. The neurons of CA 3 and CA 1 in the hippocampus showed evidences of morphological damage in both treated groups. Furthermore, the neuronal count was significantly reduced in CA 3 layer of hippocampus in E1 group.
    Matched MeSH terms: Hippocampus/drug effects*
  5. Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, et al.
    Brain Behav, 2018 09;8(9):e01093.
    PMID: 30105867 DOI: 10.1002/brb3.1093
    INTRODUCTION: Centella asiatica is an herbal plant that contains phytochemicals that are widely believed to have positive effects on cognitive function. The adolescent stage is a critical development period for the maturation of brain processes that encompass changes in physical and psychological systems. However, the effect of C. asiatica has not been extensively studied in adolescents. The aim of this study was therefore to investigate the effects of a C. asiatica extract on the enhancement of learning and memory in adolescent rats.

    METHODS: The locomotor activity, learning, and memory were assessed by using open field test and water T-maze test. This study also examined changes in neuronal cell morphology using cresyl violet and apoptosis staining. We also performed immunohistochemical study to analyse the expression of the glutamate AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) GluA1 subunit and the GABA receptor (γ-Aminobutyric Acid) subtype GABAA α1 subunit in the hippocampus of the same animals.

    RESULTS: We found no significant changes in locomotor activity (p > 0.05). The water T-maze data showed that 30 mg/kg dose significantly (p  0.05). Histological data revealed no neuronal morphological changes. Immunohistochemical analysis revealed increased expression of the AMPA GluA1 receptor subunit but there was no effect on GABAA receptor α1 subunit expression in the CA1 and CA2 subregions of the hippocampus.

    CONCLUSIONS: The C. asiatica extract therefore improved hippocampus-dependent spatial learning and memory in a dose-dependent manner in rats through the GluA1-containing AMPA receptor in the CA1 and CA2 sub regions of the hippocampus.

    Matched MeSH terms: Hippocampus/drug effects*
  6. Sanchez-Bezanilla S, Åberg ND, Crock P, Walker FR, Nilsson M, Isgaard J, et al.
    Int J Mol Sci, 2020 Jun 26;21(12).
    PMID: 32604953 DOI: 10.3390/ijms21124563
    Cognitive impairment is common after stroke, and disturbances in hippocampal function are often involved, even in remote non-hippocampal injuries. In terms of hippocampal function, growth hormone (GH) is known to affects plasticity and cognition. We aimed to investigate whether GH treatment after an experimental cortical stroke could enhance remote hippocampal plasticity and the hippocampal-dependent visual discrimination task. C57BL6 male mice were subjected to cortical photothrombotic stroke. Stroke mice were then treated with either saline or GH at 48 h after occlusion for 28 days. We assessed learning and memory using mouse touchscreen platform for the visual discrimination task. We also evaluated markers of neural progenitor cells, synaptic plasticity and cerebrovascular remodelling in the hippocampal formation. GH treatment significantly improved the performance on visual discrimination task after stroke. We observed a concomitant increased number of bromodeoxyuridine-positive cells in the dentate gyrus of the hippocampus. We also detected increased protein levels and density of doublecortin, a neuronal precursor cells marker, as well as glutamate receptor 1 (GLuR1), a synaptic marker. These findings provide further neurobiological evidence for how GH treatment could be used to promote hippocampal plasticity in a remote region from the initial cortical injury, and thus enhance cognitive recovery after stroke.
    Matched MeSH terms: Hippocampus/drug effects*
  7. Konuri A, Bhat KMR, Rai KS, Gourishetti K, Phaneendra M YS
    Anat Sci Int, 2021 Mar;96(2):197-211.
    PMID: 32944877 DOI: 10.1007/s12565-020-00574-8
    Cognitive impairment due to natural or surgical menopause is always associated with estrogen deficiency leading to reduced brain-derived neurotrophic factor (BDNF). Reduced BDNF levels in menopause affect neuronal maturation, survival, axonal and dendritic arborization and the maintenance of dendritic spine density. Conventional long-term estrogen replacement therapy reported causing the risk of venous thromboembolism and breast cancer. To overcome these undesirable effects, phytoestrogens have been used in menopause-induced condition without the risk of side effects. Therefore, the aim of the present study was to investigate the effect of dietary supplementation of fenugreek seed extract (FG) either alone or in combination with choline-DHA on BDNF and dendritic arborization of pyramidal neurons in CA1 and CA3 regions of the hippocampus in ovariectomized rats. Female Wistar rats of 9-10 months old were divided into six groups as normal control (NC); ovariectomy (OVX); OVX + FG; OVX + choline-DHA; OVX + FG + choline-DHA; and OVX + estradiol. All the groups, except NC, were ovariectomized. After 2 weeks of ovariectomy, dietary supplementation was initiated for a period of 30 days. After supplementation, behavioral studies, BDNF levels and dendritic arborization were estimated. Ovariectomized (OVX) rats showed reduced BDNF levels, dendritic branching points and dendritic intersections of pyramidal neurons in CA1 and CA3 regions of the hippocampus. OVX rats supplemented with FG with choline-DHA showed significantly improved BDNF levels, dendritic branching points and dendritic intersections. These results are demonstrating that FG with choline-DHA supplementation can be an alternative for estrogen replacement therapy to modulate menopause-induced learning and memory deficits.
    Matched MeSH terms: Hippocampus/drug effects*
  8. Suhaimi FW, Hassan Z, Mansor SM, Müller CP
    Neurosci Lett, 2021 02 06;745:135632.
    PMID: 33444671 DOI: 10.1016/j.neulet.2021.135632
    Mitragynine is the main alkaloid isolated from the leaves of Mitragyna speciosa Korth (Kratom). Kratom has been widely used to relieve pain and opioid withdrawal symptoms in humans but may also cause memory deficits. Here we investigated the changes in brain electroencephalogram (EEG) activity after acute and chronic exposure to mitragynine in freely moving rats. Vehicle, morphine (5 mg/kg) or mitragynine (1, 5 and 10 mg/kg) were administered for 28 days, and EEG activity was repeatedly recorded from the frontal cortex, neocortex and hippocampus. Repeated exposure to mitragynine increased delta, but decreased alpha powers in both cortical regions. It further decreased delta power in the hippocampus. These findings suggest that acute and chronic mitragynine can have profound effects on EEG activity, which may underlie effects on behavioral activity and cognition, particularly learning and memory function.
    Matched MeSH terms: Hippocampus/drug effects*
  9. Rahman MA, Hossain S, Abdullah N, Aminudin N
    Int J Med Mushrooms, 2020;22(11):1067-1078.
    PMID: 33426838 DOI: 10.1615/IntJMedMushrooms.2020036354
    Alzheimer's disease (AD) is the leading neurodegenerative disorder affecting memory and learning of aged people. Hypercholesterolemia had been implicated as one of the stark hallmarks of AD. Recent AD control guidelines have suggested lifestyle modification to slow down the progression of AD. In this regard, medicinal mushroom Ganoderma lucidum seems apt. In the present study, hot water extract of G. lucidum (200 mg/kg body weight) was fed to the hypercholesterolemic and AD model rats for 8 weeks. Nonspatial memory and learning abilities of the model animals was assessed using novel object recognition (NOR) test, rotarod test, and locomotor/open-field test. Then, the animals were sacrificed and transmission electron micrograph (TEM) view of the hippocampal neurons was assessed. In all the nonspatial memory and learning tests, the G. lucidum HWE fed rats performed better indicating improved memory and learning abilities. TEM view showed regular arrangement of the neurons in the G. lucidum HWE fed rats compared with those of the deranged arrangement of the AD rats. G. lucidum might have aided in restoring the memory and learning abilities of the AD model animals through maintaining neuronal structure and function. Thus, G. lucidum could be suggested as a medicotherapeutic agent against AD.
    Matched MeSH terms: Hippocampus/drug effects
  10. Hassan Z, Suhaimi FW, Ramanathan S, Ling KH, Effendy MA, Müller CP, et al.
    J. Psychopharmacol. (Oxford), 2019 07;33(7):908-918.
    PMID: 31081443 DOI: 10.1177/0269881119844186
    BACKGROUND: Mitragynine is the major alkaloid of Mitragyna speciosa (Korth.) or Kratom, a psychoactive plant widely abused in Southeast Asia. While addictive effects of the substance are emerging, adverse cognitive effects of this drug and neuropharmacological actions are insufficiently understood.

    AIMS: In the present study, we investigated the effects of mitragynine on spatial learning and synaptic transmission in the CA1 region of the hippocampus.

    METHODS: Male Sprague Dawley rats received daily (for 12 days) training sessions in the Morris water maze, with each session followed by treatment either with mitragynine (1, 5, or 10 mg/kg; intraperitoneally), morphine (5 mg/kg; intraperitoneally) or a vehicle. In the second experiment, we recorded field excitatory postsynaptic potentials in the hippocampal CA1 area in anesthetized rats and assessed the effects of mitragynine on baseline synaptic transmission, paired-pulse facilitation, and long-term potentiation. Gene expression of major memory- and addiction-related genes was investigated and the effects of mitragynine on Ca2+ influx was also examined in cultured primary neurons from E16-E18 rats.

    RESULTS/OUTCOMES: Escape latency results indicate that animals treated with mitragynine displayed a slower rate of acquisition as compared to their control counterparts. Further, mitragynine treatment significantly reduced the amplitude of baseline (i.e. non-potentiated) field excitatory postsynaptic potentials and resulted in a minor suppression of long-term potentiation in CA1. Bdnf and αCaMKII mRNA expressions in the brain were not affected and Ca2+ influx elicited by glutamate application was inhibited in neurons pre-treated with mitragynine.

    CONCLUSIONS/INTERPRETATION: These data suggest that high doses of mitragynine (5 and 10 mg/kg) cause memory deficits, possibly via inhibition of Ca2+ influx and disruption of hippocampal synaptic transmission and long-term potentiation induction.

    Matched MeSH terms: Hippocampus/drug effects
  11. Hou Z, He P, Imam MU, Qi J, Tang S, Song C, et al.
    Oxid Med Cell Longev, 2017;2017:7205082.
    PMID: 29104731 DOI: 10.1155/2017/7205082
    Menopause causes cognitive and memory dysfunction due to impaired neuronal plasticity in the hippocampus. Sirtuin-1 (SIRT1) downregulation in the hippocampus is implicated in the underlying molecular mechanism. Edible bird's nest (EBN) is traditionally used to improve general wellbeing, and in this study, we evaluated its effects on SIRT1 expression in the hippocampus and implications on ovariectomy-induced memory and cognitive decline in rats. Ovariectomized female Sprague-Dawley rats were fed with normal pellet alone or normal pellet + EBN (6, 3, or 1.5%), compared with estrogen therapy (0.2 mg/kg/day). After 12 weeks of intervention, Morris water maze (four-day trial and one probe trial) was conducted, and serum estrogen levels, toxicity markers (alanine transaminase, alkaline phosphatase, urea, and creatinine), and hippocampal SIRT1 immunohistochemistry were estimated after sacrifice. The results indicated that EBN and estrogen enhanced spatial learning and memory and increased serum estrogen and hippocampal SIRT1 expression. In addition, the EBN groups did not show as much toxicity to the liver as the estrogen group. The data suggested that EBN treatment for 12 weeks could improve cognition and memory in ovariectomized female rats and may be an effective alternative to estrogen therapy for menopause-induced aging-related memory loss.
    Matched MeSH terms: Hippocampus/drug effects*
  12. Suliman NA, Taib CNM, Moklas MAM, Basir R
    Neurotox Res, 2018 02;33(2):402-411.
    PMID: 28933048 DOI: 10.1007/s12640-017-9806-x
    Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis. Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured. Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.
    Matched MeSH terms: Hippocampus/drug effects*
  13. Karimi B, Hafidzi MN, Panandam JM, Fuzina NH
    J Biol Regul Homeost Agents, 2013 Jul-Sep;27(3):869-74.
    PMID: 24152851
    It has long been known that spatial memory and the ability to navigate through space are sexually dimorphic traits among mammals, and numerous studies have shown that these traits can be altered by means of sex hormone manipulation. Hippocampus, the main organ involved in this kind of memory, has specific signature genes with high expression level compared to other regions of the brain. Based on their expression levels and the role that products of these genes can play in processes like signal transduction, mediation of hormone effects and long term potentiation, these genes can be considered as genes necessary for routine tasks of hippocampus. Male and female rat pups were injected with estradiol and testosterone respectively. at early stage of their lives to examine the effect of sex hormone manipulation on mRNA expression of Slc9a4, Nr3c2, Htr5b and Mas1 using comparative quantitative real-time polymerase chain reaction. The results showed that expressions of these genes are strongly influenced by sex hormones in both the frontal cortex and hippocampus, especially in male hippocampus, in which expression of all genes were up-regulated. Htr5b was the only gene that was affected only in the males. Expression of Mas1 was contrary to expectations, showed stronger changes in its expression in cortex than in hippocampus. Nr3c2 was down regulated in all samples but up regulated in male hippocampus, and Slc9a4 also showed a huge up-regulation in male hippocampus compared to other samples.
    Matched MeSH terms: Hippocampus/drug effects
  14. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: Hippocampus/drug effects*
  15. Haleagrahara N, Ponnusamy K
    J Toxicol Sci, 2010 Feb;35(1):41-7.
    PMID: 20118623
    Reactive oxygen species (ROS) play an important role in ageing and age-related neurodegenerative changes including Parkinson's disease (PD). PD is characterized by signs of major oxidative stress and mitochondrial damage in the pars compacta of the substantia nigra. Present study was designed to investigate whether the Centella asiatica extract (CAE) would prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in aged Sprague-Dawley rats. Adult, male Sprague-dawley rats of 300-350 g were divided into control, C. asiatica alone, MPTP alone (20 mg/kg, for 21 days) and MPTP with C. asiatica (300 mg/kg for 21 days) groups. Effect of aqueous extract of C. asiatica on oxidative biomarker levels in corpus striatum and hippocampus homogenate was examined. MPTP-challenged rats elicited a significant increase in lipid hydroperoxides (LPO) (p < 0.01), protein-carbonyl-content (PCC) (p < 0.01) and xanthine oxidase (XO) (p < 0.01) when compared with control rats. There was a significant decrease in total antioxidants (TA) (p < 0.001), superoxide dismutase (SOD) (p < 0.001), glutathione peroxidase (GPx) (p < 0.01) and catalase (CAT) (p < 0.001) levels with MPTP treatment. Supplementation of CAE reduced LPO and PCC and significantly increased (p < 0.01) TA and antioxidant enzyme levels (p < 0.01) in corpus striatum and hippocampus. These results show that administration of C. asiatica was effective in protecting the brain against neurodegenerative disorders such as Parkinsonism.
    Matched MeSH terms: Hippocampus/drug effects
  16. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Hippocampus/drug effects*
  17. Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN, Amom Z, Jagadeesan S, Adenan MI, et al.
    Biomed Pharmacother, 2019 Jan;109:853-864.
    PMID: 30551539 DOI: 10.1016/j.biopha.2018.10.111
    BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and the commonest cause of dementia among the aged people. D-galactose (D-gal) is a senescence agent, while aluminium is a known neurotoxin linked to pathogenesis of AD. The combined administration of rats with d-gal and aluminium chloride (AlCl3) is considered to be an easy and a cheap method to obtain an animal model of AD. The plant Centella asiatica (CA) is reported to exert neuroprotective effects both in vitro and in vivo. Therefore, this study explored the protective effects of CA on cognition and brain ultrastructure in d-gal and AlCl3 induced rats.

    MATERIALS AND METHODS: Rats were exposed to d-gal 60 mg/kg/b.wt/day + AlCl3 200 mg/kg/b.wt/day and CA (200, 400 and 800 mg/kg/b.wt/day) and 1 mg/kg/b.wt/day of donepezil for 70 days. Different cognitive paradigms viz. T maze spontaneous alternation, modified elevated plus maze and novel object recognition test, were used to evaluate full lesions of the hippocampus, spatial learning and memory and non-spatial learning and memory respectively. Nissl's staining was used to determine the survival of hippocampus CA1 pyramidal cells, while transmission electron microscopy was used to check the ultrastructural changes.

    RESULTS: The results revealed that d-gal and AlCl3 could significantly impair behavior and cognitive functions, besides causing damage to the hippocampal CA1 pyramidal neurons in rats. In addition, it also caused ultrastructural morphological alterations in rat hippocampus. Conversely, co-administration o;f CA, irrespective of the dosage used, alleviated the cognitive impairments and pathological changes in the rats comparable to donepezil.

    CONCLUSION: In conclusion the results suggest that CA could protect cognitive impairments and morphological alterations caused by d-gal and AlCl3 toxicity in rats. Biochemical and molecular studies are ongoing to elucidate the probable pharmacodynamics of CA.

    Matched MeSH terms: Hippocampus/drug effects*
  18. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Makpol S, et al.
    J Alzheimers Dis, 2019;72(1):229-246.
    PMID: 31594216 DOI: 10.3233/JAD-181171
    Tocotrienol-rich fraction (TRF) is a mixture of vitamin E analogs derived from palm oil. We previously demonstrated that supplementation with TRF improved cognitive function and modulated amyloid pathology in AβPP/PS1 mice brains. The current study was designed to examine proteomic profiles underlying the therapeutic effect of TRF in the brain. Proteomic analyses were performed on samples of hippocampus, medial prefrontal cortex (mPFC), and striatum using liquid chromatography coupled to Q Exactive HF Orbitrap mass spectrometry. From these analyses, we profiled a total of 5,847 proteins of which 155 proteins were differentially expressed between AβPP/PS1 and wild-type mice. TRF supplementation of these mice altered the expression of 255 proteins in the hippocampus, mPFC, and striatum. TRF also negatively modulated the expression of amyloid beta A4 protein and receptor-type tyrosine-protein phosphatase alpha protein in the hippocampus. The expression of proteins in metabolic pathways, oxidative phosphorylation, and those involved in Alzheimer's disease were altered in the brains of AβPP/PS1 mice that received TRF supplementation.
    Matched MeSH terms: Hippocampus/drug effects
  19. Chidambaram SB, Pandian A, Sekar S, Haridass S, Vijayan R, Thiyagarajan LK, et al.
    Environ Toxicol, 2016 Dec;31(12):1955-1963.
    PMID: 26434561 DOI: 10.1002/tox.22196
    PURPOSE: Present study was undertaken to evaluate the antiamnesic effect of Sesamum indicum (S. indicum) seeds (standardized for sesamin, a lignan, content) in scopolamine, a muscarinic antagonist intoxicated mice.

    METHODS: Male Swiss albino mice (18-22 g bw) were pretreated with methanolic extract of sesame seeds (MSSE) (100 and 200 mg/kg/day, p.o) for a period of 14 days. Scopolamine (0.3 mg/kg, i.p.) was injected on day 14, 45 ± 10 min after MSSE administration. Antiamnesic effect of MSSE was evaluated using step-down latency (SDL) on passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. To unravel the mechanism of action, we examined the effects of MSSE on the genes such as acetyl cholinesterase (AChE), muscarinic receptor M1 subtype (mAChRM1 ), and brain derived neurotrophic factor (BDNF) expression within hippocampus of experimental mice. Further, its effects on bax and bcl-2 were also evaluated. Histopathological examination of hippocampal CA1 region was performed using cresyl violet staining.

    RESULTS: MSSE treatment produced a significant and dose dependent increase in step down latency in passive avoidance test and decrease in transfer latency in elevated plus maze in scopolamine intoxicated injected mice. MSSE down-regulated AChE and mAChRM1 and up-regulated BDNF mRNA expression. Further, it significantly down-regulated the bax and caspase 3 and up-regulated bcl-2 expression in scopolamine intoxicated mice brains. Mice treated with MSSE showed increased neuronal counts in hippocampal CA1 region when compared with scopolamine-vehicle treated mice.

    CONCLUSION: Sesame seeds have the ability to interact with cholinergic components involved in memory function/restoration and also an interesting candidate to be considered for future cognitive research. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1955-1963, 2016.

    Matched MeSH terms: Hippocampus/drug effects
  20. Damodaran T, Tan BWL, Liao P, Ramanathan S, Lim GK, Hassan Z
    J Ethnopharmacol, 2018 Oct 05;224:381-390.
    PMID: 29920356 DOI: 10.1016/j.jep.2018.06.020
    ETHNOPHARMACOLOGICAL RELEVANCE: Clitoria ternatea L. (CT), commonly known as Butterfly pea, is used in Indian Ayurvedic medicine to promote brain function and treat mental disorders. Root of CT has been proven to enhance memory, but its role in an animal model of chronic cerebral hypoperfusion (CCH), which has been considered as a major cause of brain disorders, has yet to be explored.

    AIM OF THE STUDY: To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model.

    MATERIALS AND METHODS: Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia).

    RESULTS: Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour.

    CONCLUSIONS: Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimer's disease (AD) patients.

    Matched MeSH terms: Hippocampus/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links