Displaying all 8 publications

Abstract:
Sort:
  1. Wong WY, Loh SW, Ng WL, Tan MC, Yeo KS, Looi CY, et al.
    Sci Rep, 2015;5:8672.
    PMID: 25728279 DOI: 10.1038/srep08672
    Emerging of drug resistant influenza A virus (IAV) has been a big challenge for anti-IAV therapy. In this study, we describe a relatively easy and safe cell-based screening system for anti-IAV replication inhibitors using a non-replicative strain of IAV. A nickel (II) complex of polyhydroxybenzaldehyde N4-thiosemicarbazone (NiPT5) was recently found to exhibit anti-inflammatory activity in vivo and in vitro. NiPT5 impedes the signaling cascades that lead to the activation of NF-κB in response to different stimuli, such as LPS and TNFα. Using our cell-based screening system, we report that pretreating cells with NiPT5 protects cells from influenza A virus (IAV) and vesicular stomatitis virus (VSV) infection. Furthermore, NiPT5 inhibits replication of IAV by inhibiting transcription and translation of vRNAs of IAV. Additionally, NiPT5 reduces IAV-induced type I interferon response and cytokines production. Moreover, NiPT5 prevents activation of NF-κB, and IRF3 in response to IAV infection. These results demonstrate that NiPT5 is a potent antiviral agent that inhibits the early phase of IAV replication.
    Matched MeSH terms: Influenza A virus/drug effects*
  2. Mehrbod P, Ideris A, Omar AR, Hair-Bejo M
    PMID: 24708698 DOI: 10.1186/1472-6882-14-131
    Influenza virus is still a severe respiratory disease affecting human and other species. As conventional drugs are not recommended for long time because of side effects and drug resistance occurrence, traditional medication has been focused as alternative remedy. HESA-A is a natural compound from herbal-marine origin. Previous studies have reported the therapeutic properties of HESA-A on psoriasis vulgaris and different types of cancers and we also showed its anti-inflammatory effects against influenza A infection.
    Matched MeSH terms: Influenza A virus/drug effects*
  3. Hossan MS, Fatima A, Rahmatullah M, Khoo TJ, Nissapatorn V, Galochkina AV, et al.
    Arch Virol, 2018 Aug;163(8):2121-2131.
    PMID: 29633078 DOI: 10.1007/s00705-018-3842-6
    Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.
    Matched MeSH terms: Influenza A virus/drug effects*
  4. Tan MC, Wong WY, Ng WL, Yeo KS, Mohidin TB, Lim YY, et al.
    PLoS One, 2017;12(1):e0170352.
    PMID: 28114392 DOI: 10.1371/journal.pone.0170352
    Influenza virus is estimated to cause 3-5 million severe complications and about 250-500 thousand deaths per year. Different kinds of anti-influenza virus drugs have been developed. However, the emergence of drug resistant strains has presented a big challenge for efficient antiviral therapy. Indole derivatives have been shown to exhibit both antiviral and anti-inflammatory activities. In this study, we adopted a cell-based system to screen for potential anti-IAV agents. Four indole derivatives (named 525A, 526A, 527A and 528A) were subjected to the antiviral screening, of which 526A was selected for further investigation. We reported that pre-treating cells with 526A protects cells from IAV infection. Furthermore, 526A inhibits IAV replication by inhibiting the expression of IAV genes. Interestingly, 526A suppresses the activation of IRF3 and STAT1 in host cells and thus represses the production of type I interferon response and cytokines in IAV-infected cells. Importantly, 526A also partially blocks the activation of RIG-I pathway. Taken together, these results suggest that 526A may be a potential anti-influenza A virus agent.
    Matched MeSH terms: Influenza A virus/drug effects*
  5. Rajik M, Yusoff K
    Antivir Chem Chemother, 2011;21(4):151-4.
    PMID: 21602612 DOI: 10.3851/IMP1728
    Influenza A virus is a particularly problematic virus because of its ability to cause high levels of morbidity on a global scale within a remarkably short period of time. It also has the potential to kill very large numbers of people as occurred in the Spanish influenza pandemic in 1918. Options for antiviral therapy are limited because of the paucity of available drugs and the rapid mutation rate of the virus leading to the emergence of drug-resistant strains. The current H1N1 pandemic and potential threats posed by other strains highlight the need to develop novel therapeutic and prophylactic strategies. Here, we summarize the current state and recent developments of peptide-based inhibitors of influenza A virus.
    Matched MeSH terms: Influenza A virus/drug effects*
  6. Suleman M, Sayaf AM, Khan A, Khan SA, Albekairi NA, Alshammari A, et al.
    J Infect Public Health, 2024 Jul;17(7):102448.
    PMID: 38815532 DOI: 10.1016/j.jiph.2024.05.005
    BACKGROUND: Influenza A virus causes severe respiratory illnesses, especially in developing nations where most child deaths under 5 occur due to lower respiratory tract infections. The RIG-I protein acts as a sensor for viral dsRNA, triggering interferon production through K63-linked poly-ubiquitin chains synthesized by TRIM25. However, the influenza A virus's NS1 protein hinders this process by binding to TRIM25, disrupting its association with RIG-I and preventing downstream interferon signalling, contributing to the virus's evasion of the immune response.

    METHODS: In our study we used structural-based drug designing, molecular simulation, and binding free energy approaches to identify the potent phytocompounds from various natural product databases (>100,000 compounds) able to inhibit the binding of NS1 with the TRIM25.

    RESULTS: The molecular screening identified EA-8411902 and EA-19951545 from East African Natural Products Database, NA-390261 and NA-71 from North African Natural Products Database, SA-65230 and SA- 4477104 from South African Natural Compounds Database, NEA- 361 and NEA- 4524784 from North-East African Natural Products Database, TCM-4444713 and TCM-6056 from Traditional Chinese Medicines Database as top hits. The molecular docking and binding free energies results revealed that these compounds have high affinity with the specific active site residues (Leu95, Ser99, and Tyr89) involved in the interaction with TRIM25. Additionally, analysis of structural dynamics, binding free energy, and dissociation constants demonstrates a notably stronger binding affinity of these compounds with the NS1 protein. Moreover, all selected compounds exhibit exceptional ADMET properties, including high water solubility, gastrointestinal absorption, and an absence of hepatotoxicity, while adhering to Lipinski's rule.

    CONCLUSION: Our molecular simulation findings highlight that the identified compounds demonstrate high affinity for specific active site residues involved in the NS1-TRIM25 interaction, exhibit exceptional ADMET properties, and adhere to drug-likeness criteria, thus presenting promising candidates for further development as antiviral agents against influenza A virus infections.

    Matched MeSH terms: Influenza A virus/drug effects
  7. Yazawa K, Kurokawa M, Obuchi M, Li Y, Yamada R, Sadanari H, et al.
    Antivir Chem Chemother, 2011;22(1):1-11.
    PMID: 21860068 DOI: 10.3851/IMP1782
    We examined the anti-influenza virus activity of tricin, 4',5,7-trihydroxy-3',5'-dimethoxyflavone, against five viruses: A/Solomon islands/3/2006 (H1N1), A/Hiroshima/52/2005 (H3N2), A/California/07/2009 (H1N1pdm), A/Narita/1/2009 (H1N1pdm) and B/Malaysia/2506/2004 strains in vitro and against A/PR/8/34 virus in vivo.
    Matched MeSH terms: Influenza A virus/drug effects*
  8. Haghani A, Mehrbod P, Safi N, Kadir FA, Omar AR, Ideris A
    BMC Complement Altern Med, 2017 Jan 05;17(1):22.
    PMID: 28056926 DOI: 10.1186/s12906-016-1498-x
    BACKGROUND: Edible Bird's Nest (EBN) as a popular traditional Chinese medicine is believed to have health enhancing and antiviral activities against influenza A virus (IAV); however, the molecular mechanism behind therapeutic effects of EBN is not well characterized.

    METHODS: In this study, EBNs that underwent different enzymatic preparation were tested against IAV infected cells. 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50) of the EBNs against IAV strain A/Puerto Rico/8/1934(H1N1) were determined by HA and MTT assays. Subsequently, the sialic acid content of the used EBNs were analyzed by fluorometric HPLC. Western Blotting and immunofluorescent staining were used to investigate the effects of EBNs on early endosomal trafficking and autophagy process of influenza virus.

    RESULTS: This study showed that post inoculations of EBNs after enzymatic preparations have the highest efficacy to inhibit IAV. While CC50 of the tested EBNs ranged from 27.5-32 mg/ml, the IC50 of these compounds ranged between 2.5-4.9 mg/ml. EBNs could inhibit IAV as efficient as commercial antiviral agents, such as amantadine and oseltamivir with different mechanisms of action against IAV. The antiviral activity of these EBNs correlated with the content of N-acetyl neuraminic acid. EBNs could affect early endosomal trafficking of the virus by reducing Rab5 and RhoA GTPase proteins and also reoriented actin cytoskeleton of IAV infected cells. In addition, for the first time this study showed that EBNs can inhibit intracellular autophagy process of IAV life cycle as evidenced by reduction of LC3-II and increasing of lysosomal degradation.

    CONCLUSIONS: The results procured in this study support the potential of EBNs as supplementary medication or alternative to antiviral agents to inhibit influenza infections. Evidently, EBNs can be a promising antiviral agent; however, these natural compounds should be screened for their metabolites prior to usage as therapeutic approach.

    Matched MeSH terms: Influenza A virus/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links