Displaying all 7 publications

Abstract:
Sort:
  1. Kochuieva M, Psarova V, Ruban L, Kyrychenko N, Alypova O, Matlai O, et al.
    Wiad Lek, 2019 Aug 31;72(8):1484-1498.
    PMID: 32003208
    Introduction: The metabolic syndrome is one of the most discussed cross-disciplinary problems of modern medicine. Now there are various definitions and criteria of diagnostics of metabolic syndrome. The abdominal obesity is considered the main component of the metabolic syndrome, as a reflection of visceral obesity which degree is offered to be estimated on an indirect indicator – a waist circumference. Alongside with abdominal obesity, a number of classifications distinguish insulin resistance (IR) as a diagnostic criterion of metabolic syndrome. It is proved that IR is one of the pathophysiological mechanisms influencing the development and the course of arterial hypertension (AH), type 2 DM and obesity. There are two components in the development of IR: genetic (hereditary) and acquired. In spite of the fact that IR has the accurate genetic predisposition, exact genetic disorders of its appearance have not been identified yet, thus demonstrating its polygenic nature.

    The aim: To establish possible associations of the insulin receptor substrate-1 (IRS-1) gene polymorphism with the severity of the metabolic syndrome components in patients with arterial hypertension (AH).

    Material and methods: 187 patients with AH aged 45-55 years and 30 healthy individuals. Methods: anthropometry, reactive hyperemia, color Doppler mapping, biochemical blood analysis, HOMA-insulin resistance (IR), glucose tolerance test, enzyme immunoassay, molecular genetic method.

    Results: Among hypertensive patients, 103 had abdominal obesity, 43 - type 2 diabetes, 131 - increased blood triglycerides, 19 - decreased high density lipoproteins, 59 - prediabetes (33 - fasting hyperglycemia and 26 - impaired glucose tolerance), 126 had IR. At the same time, hypertensive patients had the following distribution of IRS-1 genotypes: Gly/Gly - 47.9%, Gly/Arg - 42.2% and Arg/Arg - 10.7%, whereas in healthy individuals the distribution of genotypes was significantly different: Gly/Gly - 86.8% (p <0.01), Gly/ Arg - 9.9% (p <0.01) and Arg/Arg - 3.3% (p <0.05). Hypertensive patients with Arg/Arg and Gly/Arg genotypes had significantly higher HOMA-IR (p <0.01), glucose, insulin and triglycerides levels (p <0.05), than in Gly/Gly genotype. At the same time, body mass index, waist circumference, blood pressure, adiponectin, HDL, interleukin-6, C-reactive protein, degree of endothelium-dependent vasodilation, as well as the frequency of occurrence of impaired glucose tolerance did not significantly differ in IRS-1 genotypes.

    Conclusions: In hypertensive patients, the genetic polymorphism of IRS-1 gene is associated with such components of the metabolic syndrome as hypertriglyceridemia and fasting hyperglycemia; it is not associated with proinflammatory state, endothelial dysfunction, dysglycemia, an increase in waist circumference and decrease in HDL.

    Matched MeSH terms: Insulin Receptor Substrate Proteins/genetics*
  2. Blin J, Ahmad Z, Rampal LR, Mohtarrudin N, Tajudin AK, Adnan RS
    Genes Genet Syst, 2013;88(3):199-209.
    PMID: 24025248
    Identifying susceptible genes associated with the pathogenesis of atherosclerosis (ATH) may contribute toward better management of this condition. This preliminary study was aimed at assessing the expression levels of 11 candidate genes, namely tumor protein (TP53), transforming growth factor, beta receptor II (TGFBR2), cysthathionenine-beta-synthase (CBS), insulin receptor substrate 1 (IRS1), lipoprotein lipase (LPL), methylenetetrahydrofolate reductase (MTHFR), thrombomodulin (THBD), lecithin-cholesterol acyltransferase (LCAT), matrix metallopeptidase 9 (MMP9), low density lipoprotein receptor (LDLR), and arachidonate 5-lipoxygenase-activating protein (ALOX5AP) genes associated with ATH. Twelve human coronary artery tissues (HCATs) were obtained from deceased subjects who underwent post-mortem procedures. Six atherosclerotic coronary artery tissue (ACAT) samples representing the cases and non-atherosclerotic coronary artery tissue (NCAT) samples as controls were gathered based on predetermined inclusion and exclusion criteria. Gene expression levels were assessed using the GenomeLab Genetic Analysis System (GeXP). The results showed that LDLR, TP53, and MMP9 expression levels were significantly increased in ACAT compared to NCAT samples (p < 0.05). Thus, LDLR, TP53, and MMP9 genes may play important roles in the development of ATH in a Malaysian study population.
    Matched MeSH terms: Insulin Receptor Substrate Proteins/genetics
  3. Benchoula K, Parhar IS, Wong EH
    Arch Biochem Biophys, 2021 Feb 15;698:108743.
    PMID: 33382998 DOI: 10.1016/j.abb.2020.108743
    Hyperglycaemia causes pancreatic β-cells to release insulin that then attaches to a specific expression of receptor isoform and reverses high glucose concentrations. It is well known that insulin is capable of initiating insulin-receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathways in target cells; such as liver, adipose tissues, and muscles. However, recent discoveries indicate that many other pathways, such as the Hedgehog (Hh) and growth factor-stimulating Wingless-related integration (Wnt) signaling pathways; are activated in hyperglycaemia as well. Although these two pathways are traditionally thought to have a decisive role in cellular growth and differentiation only, recent reports show that they are involved in regulating cellular homeostasis and energy balance. While insulin-activated IRS/PI3K/PKB pathway cascades are primarily known to reduce glucose production, it was recently discovered to increase the Hh signaling pathway's stability, thereby activating the PI3K/PKB/mammalian target of rapamycin complex 2 (mTORC2) signaling pathway. The Hh signaling pathway not only plays a role in lipid metabolism, insulin sensitivity, inflammatory response, diabetes-related complications, but crosstalks with the Wnt signaling pathway resulting in improved insulin sensitivity and decrease inflammatory response in diabetes.
    Matched MeSH terms: Insulin Receptor Substrate Proteins
  4. Safi SZ, Batumalaie K, Qvist R, Mohd Yusof K, Ismail IS
    PMID: 27034691 DOI: 10.1155/2016/5843615
    Purpose. Type 2 diabetes consists of progressive hyperglycemia and insulin resistance, which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study we investigated the effect of Gelam honey and quercetin on the oxidative stress-induced inflammatory pathways and the proinflammatory cytokines. Methods. HIT-T15 cells were cultured and preincubated with the extract of Gelam honey (20, 40, 60, and 80 μg/mL), as well as quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM glucose. Results. HIT-T15 cells cultured under hyperglycemic condition showed a significant increase in the inflammatory pathways by phosphorylating JNK, IKK-β, and IRS-1 at Ser307 (p < 0.05). There was a significant decrease in the phosphorylation of Akt at Ser473 (p < 0.05). Pretreatment with Gelam honey and quercetin reduced the expression of phosphorylated JNK, IKK-β, and IRS-1, thereby significantly reducing the expression of proinflammatory cytokines like TNF-α, IL-6, and IL-1β (p < 0.05). At the same time there was a significant increase in the phosphorylated Akt showing the protective effects against inflammation and insulin resistance (p < 0.05). In conclusion, our data suggest the potential use of the extract from Gelam honey and quercetin in modulating the inflammation induced insulin signaling pathways.
    Matched MeSH terms: Insulin Receptor Substrate Proteins
  5. Huri HZ, Makmor-Bakry M, Hashim R, Mustafa N, Wan Ngah WZ
    Int J Clin Pharm, 2012 Dec;34(6):863-70.
    PMID: 22869200 DOI: 10.1007/s11096-012-9682-7
    BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) are frequently admitted to the hospital with severe or acute hyperglycaemia secondary to an acute illness or disease. Uncontrolled glycaemia is a significant problem during severe or acute hyperglycaemia.

    OBJECTIVE: This study sought to identify demographic, clinical, and genetic factors that may contribute to increased insulin resistance or worsening of glycaemic control in patients with T2DM.

    SETTING: This prospective cohort study included 156 patients with T2DM and severe or acute hyperglycaemia who were treated with insulin at any medical ward of the National University of Malaysia Medical Centre.

    METHOD: Insulin resistance was determined using the homeostatic model assessment-insulin resistance index. Glycaemic control during the episode of hyperglycaemia was assessed as the degree to which the patient achieved the target glucose levels. The polymerase chain reaction-restriction fragment length polymorphism method was used to identify polymorphisms in insulin receptor substrate (IRS) genes.

    MAIN OUTCOME MEASURE: Identification of possible predictors (demographic, clinical, or genetic) for insulin resistance and glycaemic control during severe/acute hyperglycaemia.

    RESULTS: A polymorphism in IRS1, r.2963 G>A (p.Gly972Arg), was a significant predictor of both insulin resistance [odds ratios (OR) 4.48; 95 % confidence interval (CI) 1.2-16.7; P = 0.03) and worsening of glycaemic control (OR 6.04; 95 % CI 0.6-64.6; P = 0.02). The use of loop diuretics (P < 0.05) and antibiotics (P < 0.05) may indirectly predict worsening of insulin resistance or glycaemic control in patients with severe/acute hyperglycaemia.

    CONCLUSION: Clinical and genetic factors contribute to worsening of insulin resistance and glycaemic control during severe/acute hyperglycaemia in patients with T2DM. Early identification of factors that may influence insulin resistance and glycaemic control may help to achieve optimal glycaemic control during severe/acute hyperglycaemia.

    Matched MeSH terms: Insulin Receptor Substrate Proteins/genetics
  6. Mohd Fauzi F, John CM, Karunanidhi A, Mussa HY, Ramasamy R, Adam A, et al.
    J Ethnopharmacol, 2017 Feb 02;197:61-72.
    PMID: 27452659 DOI: 10.1016/j.jep.2016.07.058
    ETHNOPHARMACOLOGICAL RELEVANCE: Cassia auriculata (CA) is used as an antidiabetic therapy in Ayurvedic and Siddha practice. This study aimed to understand the mode-of-action of CA via combined cheminformatics and in vivo biological analysis. In particular, the effect of 10 polyphenolic constituents of CA in modulating insulin and immunoprotective pathways were studied.

    MATERIALS AND METHODS: In silico target prediction was first employed to predict the probability of the polyphenols interacting with key protein targets related to insulin signalling, based on a model trained on known bioactivity data and chemical similarity considerations. Next, CA was investigated in in vivo studies where induced type 2 diabetic rats were treated with CA for 28 days and the expression levels of genes regulating insulin signalling pathway, glucose transporters of hepatic (GLUT2) and muscular (GLUT4) tissue, insulin receptor substrate (IRS), phosphorylated insulin receptor (AKT), gluconeogenesis (G6PC and PCK-1), along with inflammatory mediators genes (NF-κB, IL-6, IFN-γ and TNF-α) and peroxisome proliferators-activated receptor gamma (PPAR-γ) were determined by qPCR.

    RESULTS: In silico analysis shows that several of the top 20 enriched targets predicted for the constituents of CA are involved in insulin signalling pathways e.g. PTPN1, PCK-α, AKT2, PI3K-γ. Some of the predictions were supported by scientific literature such as the prediction of PI3K for epigallocatechin gallate. Based on the in silico and in vivo findings, we hypothesized that CA may enhance glucose uptake and glucose transporter expressions via the IRS signalling pathway. This is based on AKT2 and PI3K-γ being listed in the top 20 enriched targets. In vivo analysis shows significant increase in the expression of IRS, AKT, GLUT2 and GLUT4. CA may also affect the PPAR-γ signalling pathway. This is based on the CA-treated groups showing significant activation of PPAR-γ in the liver compared to control. PPAR-γ was predicted by the in silico target prediction with high normalisation rate although it was not in the top 20 most enriched targets. CA may also be involved in the gluconeogenesis and glycogenolysis in the liver based on the downregulation of G6PC and PCK-1 genes seen in CA-treated groups. In addition, CA-treated groups also showed decreased cholesterol, triglyceride, glucose, CRP and Hb1Ac levels, and increased insulin and C-peptide levels. These findings demonstrate the insulin secretagogue and sensitizer effect of CA.

    CONCLUSION: Based on both an in silico and in vivo analysis, we propose here that CA mediates glucose/lipid metabolism via the PI3K signalling pathway, and influence AKT thereby causing insulin secretion and insulin sensitivity in peripheral tissues. CA enhances glucose uptake and expression of glucose transporters in particular via the upregulation of GLUT2 and GLUT4. Thus, based on its ability to modulate immunometabolic pathways, CA appears as an attractive long term therapy for T2DM even at relatively low doses.

    Matched MeSH terms: Insulin Receptor Substrate Proteins/metabolism
  7. Ooi J, Adamu HA, Imam MU, Ithnin H, Ismail M
    Biomed Pharmacother, 2018 Feb;98:125-133.
    PMID: 29248832 DOI: 10.1016/j.biopha.2017.12.002
    This study aimed to evaluate the effect of ethyl acetate fraction (EAF) isolated from Molineria latifolia rhizome as dietary interventions for type 2 diabetes mellitus (T2DM) and its underlying molecular mechanisms in vivo. Experimental rats were induced by high fat diet feeding coupled with combined exposure to streptozotocin and nicotinamide. Treatment with EAF improved glucose tolerance and lipid profiles, but the insulin secretion was unaltered. Gene expression analyses on insulin/adipocytokine signalling-related genes demonstrated tissue-specific transcriptional responses. In skeletal muscle and liver tissues, Socs1, Tnf and Mapk8 showed consistent transcript regulation. Furthermore, hepatic translational analyses revealed sensitization on proximal insulin signalling, with reduced expression of IRS1 serine phosphorylation, increased IRS1 tyrosine phosphorylation and increased phospho-AKT (Ser473). The present findings suggested that EAF exerted its effect by modulating insulin signalling, potentially via IRS1/AKT activation. The pharmacological attributes of EAF may implicate its potential therapeutic applications for diabetes management.
    Matched MeSH terms: Insulin Receptor Substrate Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links