Displaying all 10 publications

Abstract:
Sort:
  1. Mohamad S, Ibrahim P, Wahab HA
    Chemotherapy, 2007;53(4):263-6.
    PMID: 17595540
    Our previous study demonstrated that the effects of isoniazid (INH) on Mycobacterium tuberculosis at the cellular level varied according to the growth phases. In this study, the variations in the INH action on M. avium strain NCTC 8559 are reported. M. avium cells grown on Middlebrook 7H10 agar were harvested at different stages of their growth cycle, exposed to the minimum inhibitory concentration of INH, stained with acid-fast staining for morphological changes and acid fastness properties, and the number of colonies were evaluated for viability studies. The study demonstrated that M. avium NCTC 8559 cells at the initial and fragmentation stages of the growth cycle were most susceptible to INH.
    Matched MeSH terms: Isoniazid/pharmacology*
  2. Barathan M, Shivashekaregowda NKH, Hoong SM, Vellasamy KM, Vadivelu J
    Toxicol Appl Pharmacol, 2023 Dec 15;481:116767.
    PMID: 38007073 DOI: 10.1016/j.taap.2023.116767
    Current treatments for stomach cancer are often effective in curing cancer. However, these treatments can also have significant side effects, and they may not be effective in all cases. Hence synthetic compounds exhibit promise as potential agents for cancer treatment. In a previous study, we identified (E)-N'- (2,3,4-trihydroxybenzylidene) isonicotinohydrazide (ITHB4) as a novel antimycobacterial derivative of isoniazid with cytotoxic effects on the MCF-7 breast cancer cell line. This led us to investigate the potential anti-cancer properties of ITHB4 against adenocarcinoma gastric (AGS) cell line. The cytotoxic effect of ITHB4 has been determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and further confirmed for anticancer properties by means of apoptosis, reactive oxygen species (ROS), nuclear fragmentation, lactate dehydrogenase (LDH), caspases, cytokines and morphological including phenotypic changes of cells assay. The ITHB4 demonstrated a lower IC50 in inhibiting growth of AGS cells at 24 h compared to 48 and 72 h. ITHB4 has also shown no toxicity human immune cells. Treatment of ITHB4 against AGS for 24 h eventually lead to formation of early apoptotic AGS cells, reduced mitochondrial membrane potential, nuclear condensation, and nuclear fragmentation lastly increased in ROS levels together with the release of LDH, and secretion of caspases. The altered cytokine profile in ITHB4 treated AGS hints at the possibility that ITHB4 may possess anti-tumor and anti-inflammatory properties. Our results in this study demonstrate that ITHB4 has almost similar chemotherapeutic properties against gastric adenocarcinoma cells compared to breast cancer cell. This is suggesting that the anticancer capabilities of this compound should be in vivo and clinically assessed.
    Matched MeSH terms: Isoniazid/pharmacology
  3. Jalleh RD, Kuppusamy I, Soshila R, Aziah AM, Faridza MY
    Med J Malaysia, 1993 Jun;48(2):113-6.
    PMID: 8350784
    Eight hundred and fifty-six strains of Mycobacterium tuberculosis from previously untreated patients with pulmonary tuberculosis from various states in West Malaysia were studied during the period 1984 to 1987. All the strains were tested for in vitro susceptibility to the anti-tuberculosis drugs isoniazid (INH), streptomycin (SM), rifampicin (RMP) and ethambutol (ETB). One hundred and twenty-one of the isolates (14.18%) were resistant to 1 drug while 17 (1.97%) were resistant to 2 drugs. No strain was found to be resistant to more than 2 drugs. The prevalence of primary resistance to INH was 4.20%, SM was 7.59%, RMP was 0.95% and ETB was 1.44%. In 1.86% of isolates, resistance was noted to both INH and SM, while 0.11% were resistant to both RMP and ETB. There was no significant difference in distribution of resistant bacilli between the sexes (p > 0.01).
    Matched MeSH terms: Isoniazid/pharmacology*
  4. Mohamad S, Ibrahim P, Sadikun A
    Tuberculosis (Edinb), 2004;84(1-2):56-62.
    PMID: 14670346
    In this study, the susceptibility of Mycobacterium tuberculosis to isoniazid (INH) was compared with its derivative, 1-isonicotinyl-2-nonanoyl hydrazine (INH-C9), prepared synthetically. The minimum inhibitory concentration (MIC) of the drugs was determined using the 1% proportion method. INH-C9 was found to lower the MIC of INH from 0.05 to 0.025 microg/ml. Further studies on the effects of INH and INH-C9 on M. tuberculosis were assessed by exposing the cells to the above at the MIC level. M. tuberculosis cells grown on Middlebrook 7H10 agar were harvested at different stages of their growth cycle (initial stage, 24 and 72 h), exposed to the MICs of INH and INH-C9, and stained with acid-fast staining. The observations were made for a week. The cellular morphologies and staining characteristics were examined using a Brightfield microscope. The result indicated cells only at the initial stage of growth were most susceptible to the drugs resulting in the loss of acid-fastness and intact cellular morphology in the majority of cells.
    Matched MeSH terms: Isoniazid/pharmacology*
  5. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2014;9:4749-62.
    PMID: 25336952 DOI: 10.2147/IJN.S63608
    The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB.
    Matched MeSH terms: Isoniazid/pharmacology
  6. Wahab HA, Choong YS, Ibrahim P, Sadikun A, Scior T
    J Chem Inf Model, 2009 Jan;49(1):97-107.
    PMID: 19067649 DOI: 10.1021/ci8001342
    The continuing rise in tuberculosis incidence and the problem of drug resistance strains have prompted the research on new drug candidates and the mechanism of drug resistance. Molecular docking and molecular dynamics simulation (MD) were performed to study the binding of isoniazid onto the active site of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) in an attempt to address the mycobacterial resistance against isoniazid. Results show that isonicotinic acyl-NADH (INADH) has an extremely high binding affinity toward the wild type InhA by forming stronger interactions compared to the parent drug (isoniazid) (INH). Due to the increase of hydrophobicity and reduction in the side chain's volume of A94 of mutant type InhA, both INADH and the mutated protein become more mobile. Due to this reason, the molecular interactions of INADH with mutant type are weaker than that observed with the wild type. However, the reduced interaction caused by the fluctuation of INADH and the mutant protein only inflected minor resistance in the mutant strain as inferred from free energy calculation. MD results also showed there exists a water-mediated hydrogen bond between INADH and InhA. However, the bridged water molecule is only present in the INADH-wild type complex, reflecting the putative role of the water molecule in the binding of INADH to the wild type protein. The results support the assumption that the conversion of prodrug isoniazid into its active form INADH is mediated by KatG as a necessary step prior to target binding on InhA. Our findings also contribute to a better understanding of INH resistance in mutant type.
    Matched MeSH terms: Isoniazid/pharmacology*
  7. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2016;11:3225-37.
    PMID: 27486322 DOI: 10.2147/IJN.S102406
    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.
    Matched MeSH terms: Isoniazid/pharmacology*
  8. Ikryannikova LN, Afanas'ev MV, Akopian TA, Il'ina EN, Kuz'min AV, Larionova EE, et al.
    J Microbiol Methods, 2007 Sep;70(3):395-405.
    PMID: 17602768
    A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and -8 and -15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997-2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.
    Matched MeSH terms: Isoniazid/pharmacology
  9. Narender M, Jaswanth S B, Umasankar K, Malathi J, Raghuram Reddy A, Umadevi KR, et al.
    Bioorg Med Chem Lett, 2016 Feb 01;26(3):836-840.
    PMID: 26755393 DOI: 10.1016/j.bmcl.2015.12.083
    Development of multidrug resistant (MDR) and extensively drug resistant (XDR) tuberculosis (TB) has been considered as major health burden, globally. In order to develop novel, potential molecules against drug resistant TB, twenty two (22) new 3-substituted-7-benzyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (6a-k) and 3-substituted-7-benzyl-2-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (7a-k) derivatives were designed and synthesized by using appropriate synthetic protocols. Pantothenate synthetase (PS) was considered as the target for the molecular docking studies and evaluated the binding pattern at active site, as PS plays a significant role in the biosynthesis of pantothenate in Mycobacterium tuberculosis (MTB). The preliminary in vitro antibacterial screening of test compounds was carried out against two strains of Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. The antimycobacterial screening was performed against MTB H37Rv and an isoniazid-resistant clinical isolate of MTB. The compounds 6b, 6c, 6d, 6k, 7b, 7c, 7d and 7k exhibited promising antibacterial activity MIC in the range of 15-73 μM against all bacterial strains used and compounds 6d and 7b showed antimycobacterial activity (IC50 <340 μM in LRP assay) and (MIC <9 μM in broth microdilution method).
    Matched MeSH terms: Isoniazid/pharmacology
  10. Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR
    Int J Nanomedicine, 2018;13:4303-4318.
    PMID: 30087562 DOI: 10.2147/IJN.S163925
    INTRODUCTION: Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem.

    MATERIALS AND METHODS: In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions.

    RESULTS: It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL).

    CONCLUSION: These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.

    Matched MeSH terms: Isoniazid/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links