BIOLOGICAL SIGNIFICANCE: Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.
Methods: We have employed high-throughput RNA-Seq technology to uncover the transcriptome changes of P. monodon hepatopancreas when challenged with VpAHPND. The shrimps were challenged with VpAHPND through immersion method with dissected hepatopancreas samples for the control group (APm-CTL) and treatment group at 3 (APm-T3), 6 (APm-T6), and 24 (APm-T24) hours post-AHPND infection sent for RNA-Seq. The transcriptome de novo assembly and Unigene expression determination were conducted using Trinity, Tgicl, Bowtie2, and RSEM software. The differentially expressed transcripts were functionally annotated mainly through COG, GO, and KEGG databases.
Results: The sequencing reads generated were filtered to obtain 312.77 Mb clean reads and assembled into 48662 Unigenes. Based on the DEGs pattern identified, it is inferred that the PAMPs carried by VpAHPND or associated toxins are capable of activating PRRs, which leads to subsequent pathway activation, transcriptional modification, and antibacterial responses (Phagocytosis, AMPs, proPO system). DAMPs are released in response to cell stress or damage to further activate the sequential immune responses. The comprehensive interactions between VpAHPND, chitin, GbpA, mucin, chitinase, and chitin deacetylase were postulated to be involved in bacterial colonization or antibacterial response.
Conclusions: The outcomes of this research correlate the different stages of P. monodon immune response to different time points of AHPND infection. This finding supports the development of biomarkers for the detection of early stages of VpAHPND colonization in P. monodon through host immune expression changes. The potential genes to be utilized as biomarkers include but not limited to C-type lectin, HMGB1, IMD, ALF, serine proteinase, and DSCAM.