METHODS: A systematic literature search of rs-fMRI methods applied as a pre-operative mapping tool was conducted using the PubMed/MEDLINE and Cochrane Library electronic databases following PRISMA guidelines.
RESULTS: Results demonstrated that 50% (six out of twelve) of the studies comparing rs-fMRI and T-fMRI showed good concordance for both language and sensorimotor networks. In comparison to intraoperative mapping, 86% (six out of seven) studies found a good agreement to rs-fMRI. Finally, 87% (twenty out of twenty-three) studies agreed that rs-fMRI is a suitable and useful pre-operative mapping tool.
CONCLUSIONS: rs-fMRI is a promising technique for pre-operative mapping in assessing the functional brain areas. However, the agreement between rs-fMRI with other techniques, including T-fMRI and intraoperative maps, is not yet optimal. Studies to ascertain and improve the sophistication in pre-processing of rs-fMRI imaging data are needed.
CASE PRESENTATION: We report a patient with a pseudotumor of infratemporal fossa that extends to the orbital area and cavernous sinus, causing orbital apex syndromes. The diagnostic imaging, different surgical approaches of the biopsy and methods of treatment of this case are discussed.
DISCUSSION AND CONCLUSION: Radiological imaging and immunohistopathology are essential in establishing the diagnosis and determine the complications. The surgeons must well understand the characteristics and the impact of the disorders on the adjacent structure and give prompt decision to provide definitive treatments.
METHODS: 50 POAG patients and 50 normal subjects were recruited and an MRI brain with T1-magnetization-prepared rapid gradient-echo was performed. Medial temporal lobe and parietal lobe atrophy were by MTA and PCA/Koedam scoring. The score of the PCA and MTA were compared between the POAG group and the controls.
RESULTS: There was a significant statistical difference between PCA score in POAG and the healthy control group (p-value = 0.026). There is no statistical difference between MTA score in POAG compared to the healthy control group (p-value = 0.58).
CONCLUSION: This study suggests a correlation between POAG and PCA score. Potential application of this scoring method in clinical diagnosis and monitoring of POAG patients.
ADVANCES IN KNOWLEDGE: The scoring method used in AD may also be applied in the diagnosis and monitoring of POAGMRI brain, specifically rapid volumetric T1 spoiled gradient echo sequence, may be applied in POAG assessment.
PURPOSE: To demonstrate automatic detection of BM on three MRI datasets using a deep learning-based approach. To improve the performance of the network is iteratively co-trained with datasets from different domains. A systematic approach is proposed to prevent catastrophic forgetting during co-training.
STUDY TYPE: Retrospective.
POPULATION: A total of 156 patients (105 ground truth and 51 pseudo labels) with 1502 BM (BrainMetShare); 121 patients with 722 BM (local); 400 patients with 447 primary gliomas (BrATS). Training/pseudo labels/validation data were distributed 84/51/21 (BrainMetShare). Training/validation data were split: 121/23 (local) and 375/25 (BrATS).
FIELD STRENGTH/SEQUENCE: A 5 T and 3 T/T1 spin-echo postcontrast (T1-gradient echo) (BrainMetShare), 3 T/T1 magnetization prepared rapid acquisition gradient echo postcontrast (T1-MPRAGE) (local), 0.5 T, 1 T, and 1.16 T/T1-weighted-fluid-attenuated inversion recovery (T1-FLAIR) (BrATS).
ASSESSMENT: The ground truth was manually segmented by two (BrainMetShare) and four (BrATS) radiologists and manually annotated by one (local) radiologist. Confidence and volume based domain adaptation (CAVEAT) method of co-training the three datasets on a 3D nonlocal convolutional neural network (CNN) architecture was implemented to detect BM.
STATISTICAL TESTS: The performance was evaluated using sensitivity and false positive rates per patient (FP/patient) and free receiver operating characteristic (FROC) analysis at seven predefined (1/8, 1/4, 1/2, 1, 2, 4, and 8) FPs per scan.
RESULTS: The sensitivity and FP/patient from a held-out set registered 0.811 at 2.952 FP/patient (BrainMetShare), 0.74 at 3.130 (local), and 0.723 at 2.240 (BrATS) using the CAVEAT approach with lesions as small as 1 mm being detected.
DATA CONCLUSION: Improved sensitivities at lower FP can be achieved by co-training datasets via the CAVEAT paradigm to address the problem of data sparsity.
LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.
NEW METHOD: To overcome these limitations, we propose a new statistical model that smooths out the noise by exploiting the geometric structure of correlation matrices. The dynamic correlation matrix is modeled as a linear combination of symmetric positive-definite matrices combined with cosine series representation. The resulting smoothed dynamic correlation matrices are clustered into disjoint brain connectivity states using the k-means clustering algorithm.
RESULTS: The proposed model preserves the geometric structure of underlying physiological dynamic correlation, eliminates unwanted noise in connectivity and obtains more accurate state spaces. The difference in the estimated dynamic connectivity states between males and females is identified.
COMPARISON WITH EXISTING METHODS: We demonstrate that the proposed statistical model has less rapid state changes caused by noise and improves the accuracy in identifying and discriminating different states.
CONCLUSIONS: We propose a new regression model on dynamically changing correlation matrices that provides better performance over existing windowed correlation and is more reliable for the modeling of dynamic connectivity.
METHODS: Knee image is first oversegmented to produce homogeneous superpixels. Then, a ranking model is developed to rank the superpixels according to their affinities to standard priors, wherein background superpixels would have lower ranking values. Finally, seed labels are generated on the background superpixel using Fuzzy C-Means method.
RESULTS: SAGE has achieved better interobserver DSCs of 0.94 ± 0.029 and 0.93 ± 0.035 in healthy and OA knee segmentation, respectively. Good segmentation performance has been reported in femoral (Healthy: 0.94 ± 0.036 and OA: 0.93 ± 0.034), tibial (Healthy: 0.91 ± 0.079 and OA: 0.88 ± 0.095) and patellar (Healthy: 0.88 ± 0.10 and OA: 0.84 ± 0.094) cartilage segmentation. Besides, SAGE has demonstrated greater mean readers' time of 80 ± 19 s and 80 ± 27 s in healthy and OA knee segmentation, respectively.
CONCLUSIONS: SAGE enhances the efficiency of segmentation process and attains satisfactory segmentation performance compared to manual and random walks segmentation. Future works should validate SAGE on progressive image data cohort using OA biomarkers.