Displaying all 6 publications

Abstract:
Sort:
  1. Dinh TC, Thi Phuong TN, Minh LB, Minh Thuc VT, Bac ND, Van Tien N, et al.
    Diabetes Metab Syndr, 2019 03 15;13(2):1667-1673.
    PMID: 31336539 DOI: 10.1016/j.dsx.2019.03.021
    Obesity is one of the top global issues, which induces several serious health consequences both physically and mentally, such as type 2 diabetes, cardiovascular diseases, dyslipidemia, eating disorders, depression and stress. However, the effective therapy to prevent and treat obesity and overweight, up to now, cannot be found nowadays. Several methods/medicines namely diet control, energy balance, environmental changes, genetic and stem cell therapies, new drugs/chemicals have been extensively studied to enhance the ability to control bodyweight and prevent obesity. Of all the aforementioned methods, green tea, used as a daily beverage, has shown beneficial impacts for the health, especially its anti-obesity effects. Available evidence shows that green tea can interrupt lipid emulsification, reduce adipocyte differentiation, increase thermogenesis, and reduce food intake, thus green tea improves the systemic metabolism and decreases fat mass. Here, we highlight and sum up the update investigations of anti-obesity effect of green tea as well as discuss the potential application of them for preventing obesity and its related metabolic disorders.
    Matched MeSH terms: Metabolic Diseases/prevention & control*
  2. Pang KL, Chin KY
    Molecules, 2019 Mar 06;24(5).
    PMID: 30845769 DOI: 10.3390/molecules24050923
    Obesity is a major risk factor for diabetes, and these two metabolic conditions cause significant healthcare burden worldwide. Chronic inflammation and increased oxidative stress due to exposure of cells to excess nutrients in obesity may trigger insulin resistance and pancreatic β-cell dysfunction. Tocotrienol, as a functional food component with anti-inflammatory, antioxidant, and cell signaling-mediating effects, may be a potential agent to complement the current management of obesity and diabetes. The review aimed to summarize the current evidence on the anti-obesity and antidiabetic effects of tocotrienol. Previous studies showed that tocotrienol could suppress adipogenesis and, subsequently, reduce body weight and fat mass in animals. This was achieved by regulating pathways of lipid metabolism and fatty acid biosynthesis. It could also reduce the expression of transcription factors regulating adipogenesis and increase apoptosis of adipocytes. In diabetic models, tocotrienol was shown to improve glucose homeostasis. Activation of peroxisome proliferator-activated receptors was suggested to be responsible for these effects. Tocotrienol also prevented multiple systemic complications due to obesity and diabetes in animal models through suppression of inflammation and oxidative stress. Several clinical trials have been conducted to validate the antidiabetic of tocotrienol, but the results were heterogeneous. There is no evidence showing the anti-obesity effects of tocotrienol in humans. Considering the limitations of the current studies, tocotrienol has the potential to be a functional food component to aid in the management of patients with obesity and diabetes.
    Matched MeSH terms: Metabolic Diseases/prevention & control*
  3. Ramly M, Moy FM, Pendek R, Suboh S, Tan Tong Boon A
    BMC Public Health, 2013 May 01;13:416.
    PMID: 23631804 DOI: 10.1186/1471-2458-13-416
    BACKGROUND: Besides its classical role in musculoskeletal diseases, vitamin D deficiency has recently been found to be associated with cardiometabolic risks such as hypertension, diabetes mellitus and hypercholesterolemia. Although Malaysia is a sunshine-abundant country, recent studies found that vitamin D deficiency prevalence was significantly high. However, few published studies that measured its effect on cardiometabolic risk factors were found in Malaysia. There are also limited clinical trials carried out globally that tried to establish the causality of vitamin D and cardiometabolic risks. Therefore, a double blind, parallel, randomized controlled trial on vitamin D and cardiometabolic risks is planned to be carried out.The objective of this study is to investigate whether vitamin D supplements can reduce the cardiometabolic risk and improve the quality of life in urban premenopausal women with vitamin D deficiency.

    METHODS/DESIGN: Three hundred and twenty premenopausal women working in a public university in Kuala Lumpur, Malaysia will be randomized to receive either vitamin D supplement (50,000 IU weekly for 8 weeks and 50,000 IU monthly for 10 months) or placebo for 12 months. At baseline, all participants are vitamin D deficient (≤ 20 ng/ml or 50 nmol/l). Both participants and researchers will be blinded. The serum vitamin D levels of all participants collected at various time points will only be analysed at the end of the trial. Outcome measures such as 25(OH) D3, HOMA-IR, blood pressure, full lipid profiles will be taken at baseline, 6 months and 12 months. Health related quality of life will be measured at baseline and 12 months. The placebo group will be given delayed treatment for six months after the trial.

    DISCUSSION: This trial will be the first study investigating the effect of vitamin D supplements on both the cardiometabolic risk and quality of life among urban premenopausal women in Malaysia. Our findings will contribute to the growing body of knowledge in the role of vitamin D supplements in the primary prevention for cardiometabolic disease.

    TRIAL REGISTRATION: ACTRN12612000452897.

    Matched MeSH terms: Metabolic Diseases/prevention & control
  4. Erejuwa OO, Sulaiman SA, Ab Wahab MS
    Int J Mol Sci, 2014 Mar 07;15(3):4158-88.
    PMID: 24608927 DOI: 10.3390/ijms15034158
    The gut microbiota plays a number of important roles including digestion, metabolism, extraction of nutrients, synthesis of vitamins, prevention against pathogen colonization, and modulation of the immune system. Alterations or changes in composition and biodiversity of the gut microbiota have been associated with many gastrointestinal tract (GIT) disorders such as inflammatory bowel disease and colon cancer. Recent evidence suggests that altered composition and diversity of gut microbiota may play a role in the increased prevalence of metabolic diseases. This review article has two main objectives. First, it underscores approaches (such as probiotics, prebiotics, antimicrobial agents, bariatric surgery, and weight loss strategies) and their prospects in modulating the gut microbiota in the management of metabolic diseases. Second, it highlights some of the current challenges and discusses areas of future research as it relates to the gut microbiota and metabolic diseases. The prospect of modulating the gut microbiota seems promising. However, considering that research investigating the role of gut microbiota in metabolic diseases is still in its infancy, more rigorous and well-designed in vitro, animal and clinical studies are needed.
    Matched MeSH terms: Metabolic Diseases/prevention & control*
  5. Hor YY, Ooi CH, Khoo BY, Choi SB, Seeni A, Shamsuddin S, et al.
    J Med Food, 2019 Jan;22(1):1-13.
    PMID: 30592688 DOI: 10.1089/jmf.2018.4229
    Aging is an inevitable and ubiquitous progress that affects all living organisms. A total of 18 strains of lactic acid bacteria (LAB) were evaluated on the activation of adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor mediating lifespan extension. The cell-free supernatant (CFS) of Lactobacillus fermentum DR9 (LF-DR9), Lactobacillus paracasei OFS 0291 (LP-0291), and Lactobacillus helveticus OFS 1515 (LH-1515) showed the highest activation of AMPK and was further evaluated. The phosphorylation of AMPK by these three LAB strains was more evident in U2OS and C2C12 cells, compared to the other cell lines and control (P control (P control. The selected LAB strains also enhanced lipid, renal, and liver profile of rats, suggesting added potential of the strains in preventing aging-induced metabolic diseases. Strain LP-0291 and LH-1515 showed ability to adhere to mucin, no antibiotic resistance, tolerated and proliferated under gastric and intestinal simulated conditions, and inhibited the growth of pathogens Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis, comparable to commercial probiotic LF-DR9 and Lactobacillus sakei Probio 65. This study provided an insight into the potential of LAB for exhibiting antisenescence effects, with potentials as new medicinal foods for targeted antiaging therapies.
    Matched MeSH terms: Metabolic Diseases/prevention & control*
  6. Norris SA, Ho JC, Rashed AA, Vinding V, Skau JK, Biesma R, et al.
    BMC Public Health, 2016 11 17;16(1):1167.
    PMID: 27855663
    BACKGROUND: Malaysia is experiencing a nutrition transition with burgeoning obesity, particularly in women, and a growing prevalence of non-communicable disease. These health burdens have severe implications not only for adult health but also across generations. Pre-conception health promotion could address the intergenerational risk of metabolic disease. This paper describes the development of the "Jom Mama" intervention using Intervention Mapping (IM). The Jom Mama intervention aims to improve the health of young adult couples in Malaysia prior to conception.

    METHODS: IM comprises of five steps prior to the last one, which involves the evaluation of the intervention. We used the five steps to develop the Jom Mama intervention.

    RESULTS: Both the process and evidence is documented providing the rationale to the selection of the key objectives of the intervention: (i) increasing healthy dietary practice; (ii) increasing physical activity levels, (iii) reducing sedentary activity; and (iv) improving social support to offset stressful lifestyles. From the IM process, Jom Mama will be health-system centred approach that uniquely combines both community health promoters and an electronic-health platform to deliver the complex intervention.

    CONCLUSION: IM is an iterative process that systematically gathers "best" evidence, selects appropriate theories of behaviour change, and facilitates formative research so as to develop a complex intervention. Though the IM process is time consuming, complex, and costly, it has enriched the Jom Mama intervention with a number of notable advantages: (i) intervention fashioned on formative work with stakeholders and in the target group; (ii) intervention combines research evidence with theory; (iii) intervention acknowledges multiple dynamics of influence; and (iv) intervention is embedded within health service priorities in Malaysia for greater scale-up possibility.
    Matched MeSH terms: Metabolic Diseases/prevention & control*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links