Displaying publications 1 - 20 of 122 in total

Abstract:
Sort:
  1. Nikolopoulos GK, Kostaki EG, Paraskevis D
    Infect Genet Evol, 2016 Dec;46:256-268.
    PMID: 27287560 DOI: 10.1016/j.meegid.2016.06.017
    HIV strains continuously evolve, tend to recombine, and new circulating variants are being discovered. Novel strains complicate efforts to develop a vaccine against HIV and may exhibit higher transmission efficiency and virulence, and elevated resistance to antiretroviral agents. The United Nations Joint Programme on HIV/AIDS (UNAIDS) set an ambitious goal to end HIV as a public health threat by 2030 through comprehensive strategies that include epidemiological input as the first step of the process. In this context, molecular epidemiology becomes invaluable as it captures trends in HIV evolution rates that shape epidemiological pictures across several geographical areas. This review briefly summarizes the molecular epidemiology of HIV among people who inject drugs (PWID) in Europe and Asia. Following high transmission rates of subtype G and CRF14_BG among PWID in Portugal and Spain, two European countries, Greece and Romania, experienced recent HIV outbreaks in PWID that consisted of multiple transmission clusters including subtypes B, A, F1, and recombinants CRF14_BG and CRF35_AD. The latter was first identified in Afghanistan. Russia, Ukraine, and other Former Soviet Union (FSU) states are still facing the devastating effects of epidemics in PWID produced by AFSU (also known as IDU-A), BFSU (known as IDU-B), and CRF03_AB. In Asia, CRF01_AE and subtype B (Western B and Thai B) travelled from PWID in Thailand to neighboring countries. Recombination hotspots in South China, Northern Myanmar, and Malaysia have been generating several intersubtype and inter-CRF recombinants (e.g. CRF07_BC, CRF08_BC, CRF33_01B etc.), increasing the complexity of HIV molecular patterns.
    Matched MeSH terms: Molecular Epidemiology
  2. Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, et al.
    Cells, 2022 Nov 06;11(21).
    PMID: 36359908 DOI: 10.3390/cells11213511
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
    Matched MeSH terms: Molecular Epidemiology
  3. Chow WZ, Nizam S, Ong LY, Ng KT, Chan KG, Takebe Y, et al.
    Genome Announc, 2014;2(2).
    PMID: 24675847 DOI: 10.1128/genomeA.00139-14
    A complex HIV-1 unique recombinant form involving subtypes CRF01_AE, B, and B' was recently identified from an injecting drug user in Malaysia. A total of 13 recombination breakpoints were mapped across the near-full-length genome of isolate 10MYPR226, indicating the increasingly diverse molecular epidemiology and frequent linkage among various high-risk groups.
    Matched MeSH terms: Molecular Epidemiology
  4. Teh CSJ, Yap PSX, Zulkefli NJ, Subramaniam P, Sit PS, Kong ZX, et al.
    Transbound Emerg Dis, 2021 Jan 27.
    PMID: 33506647 DOI: 10.1111/tbed.14005
    Burkholderia pseudomallei, a Gram-negative bacterial pathogen that causes melioidosis, is of public health importance in endemic areas including Malaysia. An investigation of the molecular epidemiology links of B. pseudomallei would contribute to better understanding of the clonal relationships, transmission dynamics and evolutionary change. Multi-locus sequence typing (MLST) of 45 clinical B. pseudomallei isolates collected from sporadic meliodosis cases in Malaysia was performed. In addition, a total of 449 B. pseudomallei Malaysian strains submitted to the MLST database from 1964 until 2019 were included in the temporal analysis to determine the endemic sequence types (STs), emergence and re-emergence of ST(s). In addition, strain-specific distribution was evaluated using BURST tool. Genotyping of 45 clinical strains were resolved into 12 STs and the majority were affiliated with ST46 (n=11) and ST1342 (n=7). Concomitantly, ST46 was the most prevalent ST in Malaysia which first reported in 1964. All the Malaysian B. pseudomallei strains were resolved into 76 different STs with 36 of them uniquely present only in Malaysia. ST1342 was most closely related to ST1034, in which both STs were unique to Malaysia and first isolated from soil samples in Pahang, a state in Malaysia. The present study revealed a high diversity of B. pseudomallei in Malaysia. Localised evolution giving rise to the emergence of new STs was observed, suggesting that host and environmental factors play a crucial role in the evolutionary changes of B. pseudomallei.
    Matched MeSH terms: Molecular Epidemiology
  5. Vincent, M., Chan, C. S. W., Apun, K.
    MyJurnal
    The present study was conducted to assess the rapid molecular identification and characterization of 45 Vibrio parahaemolyticus isolates from 15 samples of 3 different types of fish (Kembung, Bawal and Sangeh) in the Kuching-Samarahan district. Polymerase chain reaction (PCR) based confirmation was done targeting the 450 bp fragment of the thermolabile (tl) gene, while DNA fingerprinting was performed using Randomly Amplified Polymorphic DNA (RAPD) PCR with the primer GEN15008. All the 45 V. parahaemolyticus isolates were positive for the tl gene, however, only 34 were typable via RAPD-PCR with bands sizes ranging from slightly over 250 bp to 2.5 kbp. The degree of diversity was then determined via the Simpson Index which showed a value of 0.891, indicating high diversity among the isolates. Data from the RAPD-PCR fingerprints were later used to construct a dendrogram for clustal analysis. From the dendrogram, the 34 isolates were grouped into 2 major clusters containing 26 and 8 isolates, respectively. Further analyses of the dendrogram also indicated that the 34 isolated were clustered according to the period of sampling. This is an interesting observation as it shows the high discriminatory capability of RAPD-PCR to be used as molecular epidemiological tool to study the temporal distribution of V. parahaemolyticus.
    Matched MeSH terms: Molecular Epidemiology
  6. Kong ZX, N Karunakaran R, Abdul Jabar K, Ponnampalavanar S, Chong CW, Teh CSJ
    PeerJ, 2022;10:e12830.
    PMID: 35223201 DOI: 10.7717/peerj.12830
    BACKGROUND: Carbapenem resistant Enterobacteriaceae (CRE) has rapidly disseminated worldwide and has become a global threat to the healthcare system due to its resistance towards "last line" antibiotics. This study aimed to investigate the prevalence of CRE and the resistance mechanism as well as the risk factors associated with in-hospital mortality.

    METHODS: A total of 168 CRE strains isolated from a tertiary teaching hospital from 2014-2015 were included in this study. The presence of carbapenemase genes and minimum inhibitory concentration of imipenem, meropenem and colistin were investigated. All carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae) strains were characterised by PFGE. The risk factors of patients infected by CRE associated with in-hospital mortality were determined statistically.

    RESULTS: The predominant CRE species isolated was K. pneumoniae. The carbapenemases detected were blaOXA-48, blaOXA-232, blaVIM and blaNDM of which blaOXA-48 was the predominant carbapenemase detected among 168 CRE strains. A total of 40 CRE strains harboured two different carbapenemase genes. A total of seven clusters and 48 pulsotypes were identified among 140 CRKp strains. A predominant pulsotype responsible for the transmission from 2014 to 2015 was identified. Univariate statistical analysis identified that the period between CRE isolation and start of appropriate therapy of more than 3 days was statistically associated with in-hospital mortality.

    Matched MeSH terms: Molecular Epidemiology
  7. Rizwan M, Ali S, Javid A, von Fricken ME, Rashid MI
    Acta Trop, 2023 Jul;243:106940.
    PMID: 37160189 DOI: 10.1016/j.actatropica.2023.106940
    Bartonella can infect a variety of mammals including humans and has been detected in the Americas, Europe, Africa, and Asia. Roughly two-thirds of identified Bartonella species are found and maintained in rodent reservoirs, with some of these species linked to human infections. Rodents (N=236) were caught from the Sahiwal division of Punjab, Pakistan and tested for Bartonella using PCR targeting gltA and rpoB genes, followed by sequencing of rpoB-positive samples. Genetic relatedness to other published Bartonella spp. rpoB gene sequences were examined using BLAST and phylogenetic analysis. Overall, 7.62% (18/236) of rodents were positive for both gltA and rpoB fragments. Rattus rattus and R. norvegicus had 7.94% (12/151) and 7.05% (6/85) positivity rates for Bartonella DNA, respectively. Phylogenetic analysis revealed a close relatedness between Bartonella spp. from Pakistan to Bartonella spp. from China, Nepal, and Malaysia. This study is the first reported detection of Bartonella spp. in R. rattus and R. norvegicus from the Sahiwal area of Punjab, Pakistan.
    Matched MeSH terms: Molecular Epidemiology
  8. Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, et al.
    Science, 2022 Aug 26;377(6609):960-966.
    PMID: 35881005 DOI: 10.1126/science.abp8337
    Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
    Matched MeSH terms: Molecular Epidemiology
  9. Wong QYA, Lim JJ, Ng JY, Lim YYE, Sio YY, Chew FT
    J Physiol Anthropol, 2024 Jan 30;43(1):6.
    PMID: 38291494 DOI: 10.1186/s40101-024-00356-5
    BACKGROUND AND OBJECTIVE: Sleep disruption has been shown to affect immune function and thus influence allergic disease manifestation. The specific effects of sleep on allergic diseases, however, are less well-established; hence, in a unique population of young Chinese adults, we investigated the association between sleep and allergic disease.

    METHODS: Young Chinese adults recruited from Singapore in the Singapore/Malaysia Cross-Sectional Genetic Epidemiology Study (SMCGES) were analyzed. We used the International Study of Asthma and Allergies in Childhood (ISAAC) protocol and a skin prick test to determine atopic dermatitis (AD), allergic rhinitis (AR), and asthma status. Information regarding total sleep time (TST) and sleep quality (SQ) was also obtained.

    RESULTS: Of 1558 participants with a mean age of 25.0 years (SD = 7.6), 61.4% were female, and the mean total sleep time (TST) was 6.8 h (SD = 1.1). The proportions of AD, AR, and asthma were 24.5% (393/1542), 36.4% (987/1551), and 14.7% (227/1547), respectively. 59.8% (235/393) of AD cases suffered from AD-related sleep disturbances, 37.1% (209/564) of AR cases suffered from AR-related sleep disturbances, and 25.1% (57/227) of asthma cases suffered from asthma-related sleep disturbances. Only asthma cases showed a significantly lower mean TST than those without asthma (p = 0.015). Longer TST was significantly associated with lower odds of AR (OR = 0.905, 95% CI = 0.820-0.999) and asthma (OR = 0.852, 95% CI = 0.746-0.972). Linear regression analyses showed that lower TST was significantly associated with asthma (β =  - 0.18, SE = 0.076, p-value = 0.017), and AR when adjusted for AR-related sleep disturbances (β =  - 0.157, SE = 0.065, p-value = 0.016). Only sleep disturbances due to AR were significantly associated with a poorer SQ (OR = 1.962, 95% CI = 1.245-3.089).

    CONCLUSIONS: We found that sleep quality, but not sleep duration was significantly poorer among AD cases, although the exact direction of influence could not be determined. In consideration of the literature coupled with our findings, we posit that TST influences allergic rhinitis rather than vice versa. Finally, the association between TST and asthma is likely mediated by asthma-related sleep disturbances, since mean TST was significantly lower among those with nighttime asthma symptoms. Future studies could consider using objective sleep measurements coupled with differential expression analysis to investigate the pathophysiology of sleep and allergic diseases.

    Matched MeSH terms: Molecular Epidemiology
  10. Sivadas A, Salleh MZ, Teh LK, Scaria V
    Pharmacogenomics J, 2017 10;17(5):461-470.
    PMID: 27241059 DOI: 10.1038/tpj.2016.39
    Expanding the scope of pharmacogenomic research by including multiple global populations is integral to building robust evidence for its clinical translation. Deep whole-genome sequencing of diverse ethnic populations provides a unique opportunity to study rare and common pharmacogenomic markers that often vary in frequency across populations. In this study, we aim to build a diverse map of pharmacogenetic variants in South East Asian (SEA) Malay population using deep whole-genome sequences of 100 healthy SEA Malay individuals. We investigated the allelic diversity of potentially deleterious pharmacogenomic variants in SEA Malay population. Our analysis revealed 227 common and 466 rare potentially functional single nucleotide variants (SNVs) in 437 pharmacogenomic genes involved in drug metabolism, transport and target genes, including 74 novel variants. This study has created one of the most comprehensive maps of pharmacogenetic markers in any population from whole genomes and will hugely benefit pharmacogenomic investigations and drug dosage recommendations in SEA Malays.
    Matched MeSH terms: Molecular Epidemiology/methods*
  11. Cassol S, Weniger BG, Babu PG, Salminen MO, Zheng X, Htoon MT, et al.
    AIDS Res Hum Retroviruses, 1996 Oct 10;12(15):1435-41.
    PMID: 8893051
    Global surveillance of HIV-1 subtypes for genetic characterization is hampered by the biohazard of processing and the difficulties of shipping whole blood or cells from many developing country regions. We developed a technique for the direct automated sequencing of viral DNA from dried blood spot (DBS) specimens collected on absorbent paper, which can be mailed unrefrigerated in sturdy paper envelopes with low biohazard risk. DBS were collected nonrandomly from HIV-1-infected, mostly asymptomatic, patients in five Asian countries in 1991, and shipped via airmail or hand carried without refrigeration to Bangkok, and then transshipped to North America for processing. After more than 2 years of storage, including 6 months at ambient temperatures, proviral DNA in the DBS was amplified by nested PCR, and a 389-nucleotide segment of the C2-V3 env gene region was sequenced, from which 287 base pairs were aligned and subtyped by phylogenetic analysis with neighbor-joining and other methods. From southern India, there were 25 infections with subtype C and 2 with subtype A. From Myanmar (Burma), we identified the first subtype E infection, as well as six subtype BB, a distinct cluster within subtype B that was first discovered in Thailand and that has now appeared in China, Malaysia, and Japan. From southwest China, one BB was identified, while a "classical" B typical of North American and European strains was found in Indonesia. From Thailand, five DBS of ambiguous serotype were identified as three B, one BB, and one E. A blinded control serotype E specimen was correctly identified, but a serotype BB control was not tested. Most HIV-1 in southern India appears to be env subtype C, with rare A, as others have reported in western and northern India. The subtypes BB and E in Myanmar, and the BB in China, suggest epidemiological linkage with these subtypes in neighboring Thailand. DBS are a practical, economical technique for conducting large-scale molecular epidemiological surveillance to track the global distribution and spread of HIV-1 variants.
    Matched MeSH terms: Molecular Epidemiology/methods*
  12. Cardosa MJ, Perera D, Brown BA, Cheon D, Chan HM, Chan KP, et al.
    Emerg Infect Dis, 2003 Apr;9(4):461-8.
    PMID: 12702227
    This study provides a comprehensive overview of the molecular epidemiology of human enterovirus 71 (HEV71) in the Asia-Pacific region from 1997 through 2002. Phylogenetic analysis of the VP4 and VP1 genes of recent HEV71 strains indicates that several genogroups of the virus have been circulating in the Asia-Pacific region since 1997. The first of these recent outbreaks, described in Sarawak (Malaysian Borneo) in 1997, was caused by genogroup B3. This outbreak was followed by large outbreaks in Taiwan in 1998, caused by genogroup C2, and in Perth (Western Australia) in 1999, where viruses belonging to genogroups B3 and C2 cocirculated. Singapore, Taiwan, and Sarawak had HEV71 epidemics in 2000, caused predominantly by viruses belonging to genogroup B4; however, large numbers of fatalities were observed only in Taiwan. HEV71 was identified during an epidemic of hand, foot and mouth disease in Korea; that epidemic was found to be due to viruses constituting a new genogroup, C3.
    Matched MeSH terms: Molecular Epidemiology/methods*
  13. Jagdagsuren D, Hayashida T, Takano M, Gombo E, Zayasaikhan S, Kanayama N, et al.
    PLoS One, 2017;12(12):e0189605.
    PMID: 29244859 DOI: 10.1371/journal.pone.0189605
    OBJECTIVE: Our previous 2005-2009 molecular epidemiological study in Mongolia identified a hot spot of HIV-1 transmission in men who have sex with men (MSM). To control the infection, we collaborated with NGOs to promote safer sex and HIV testing since mid-2010. In this study, we carried out the second molecular epidemiological survey between 2010 and 2016 to determine the status of HIV-1 infection in Mongolia.

    METHODS: The study included 143 new cases of HIV-1 infection. Viral RNA was extracted from stocked plasma samples and sequenced for the pol and the env regions using the Sanger method. Near-full length sequencing using MiSeq was performed in 3 patients who were suspected to be infected with recombinant HIV-1. Phylogenetic analysis was performed using the neighbor-joining method and Bayesian Markov chain Monte Carlo method.

    RESULTS: MSM was the main transmission route in the previous and current studies. However, heterosexual route showed a significant increase in recent years. Phylogenetic analysis documented three taxa; Mongolian B, Korean B, and CRF51_01B, though the former two were also observed in the previous study. CRF51_01B, which originated from Singapore and Malaysia, was confirmed by near-full length sequencing. Although these strains were mainly detected in MSM, they were also found in increasing numbers of heterosexual males and females. Bayesian phylogenetic analysis estimated transmission of CRF51_01B into Mongolia around early 2000s. An extended Bayesian skyline plot showed a rapid increase in the effective population size of Mongolian B cluster around 2004 and that of CRF51_01B cluster around 2011.

    CONCLUSIONS: HIV-1 infection might expand to the general population in Mongolia. Our study documented a new cluster of HIV-1 transmission, enhancing our understanding of the epidemiological status of HIV-1 in Mongolia.

    Matched MeSH terms: Molecular Epidemiology*
  14. Wong YL, Ong CS, Ngeow YF
    J Clin Microbiol, 2012 Sep;50(9):3084-8.
    PMID: 22760048 DOI: 10.1128/JCM.00753-12
    A variable-number tandem-repeat (VNTR) typing assay for the differentiation of Mycobacterium abscessus strains was developed. This assay showed complete reproducibility, locus stability, and a discriminatory power (Hunter-Gaston discriminatory index [HGDI] of 0.9563) that is superior to that of multilocus sequencing. It is a promising tool for the investigation of Mycobacterium abscessus epidemiology and nosocomial outbreaks.
    Matched MeSH terms: Molecular Epidemiology/methods
  15. Zhu X, Chen H, Li S, Wang LC, Wu DR, Wang XM, et al.
    Front Microbiol, 2020;11:778.
    PMID: 32457710 DOI: 10.3389/fmicb.2020.00778
    Melioidosis is a common infectious disease in Southeast Asia and Northern Australia. In Hainan, several cases have been reported, but no systematic study has yet been done on the molecular epidemiology profiles of the organism. An investigation of the molecular epidemiology links and population structure of Burkholderia pseudomallei would help to better understand the clonally of the isolates and differences among them. In this study, multilocus variable-number tandem repeat analysis (MLVA), and multilocus sequence typing (MLST) were applied to examine the epidemiological relatedness and population structure of 166 B. pseudomallei isolates obtained during 2002-2014 in Hainan, China. Both the MLVA_4 and MLST approaches had high discriminatory power for this population, with diversity indices of 0.9899 and 0.9457, respectively. However, the MLVA_4 assay showed a higher discriminatory power than the MLST approach, and a variable-number tandem repeat (VNTR3 933) found by the MLVA approach was the most useful in discriminating strains from this province. A total of 166 strains yielded 99 MLVA_4 genotypes, of which 34 genotypes were shared by 101 isolates, for a clustering rate of 60.8% (101/166), which suggested that some cases may have a common source. Additionally, 65 isolates showed distinct genotypes, indicating that more than 39.2% (65/166) of melioidosis cases in Hainan had epidemiologically unrelated or sporadic characteristics. The 166 isolates were resolved into 48 STs, of which five STs (ST55, -70, -46, -50, and -58) were here found to be predominant. Phylogenetic analysis of 116 isolates conducted using the eBURST v3 segregated the 48 STs into eight groups with ST50 as predicted founder, and 21 STs were found to be singletons, which suggest that the strains in the Hainan region represent a high diversity of ST clones, indicating that many B. pseudomallei clone groups are endemic to this region. Moreover, ST50 had 5 SLV, 7 DLV, 6 TLV, and 29 satellite STs and formed a radial expansion pattern, suggesting that the melioidosis epidemic in this study was mainly caused by the clonal expansion of ST 50. Phylogenetic analysis on global scale suggests that China's isolates are closely related to isolates from Southeast Asia, particularly from Thailand and Malaysia.
    Matched MeSH terms: Molecular Epidemiology
  16. Tan SC
    J Gene Med, 2018 04;20(4):e3010.
    PMID: 29424105 DOI: 10.1002/jgm.3010
    Colorectal cancer is a leading form of cancer in both males and females. Early detection of individuals at risk of colorectal cancer allows proper treatment and management of the disease to be implemented, which can potentially reduce the burden of colorectal cancer incidence, morbidity and mortality. In recent years, the role of genetic susceptibility factors in mediating predisposition to colorectal cancer has become more and more apparent. Identification of high-frequency, low-penetrance genetic polymorphisms associated with the cancer has therefore emerged as an important approach which can potentially aid prediction of colorectal cancer risk. However, the overwhelming amount of genetic epidemiology data generated over the past decades has made it difficult for one to assimilate the information and determine the exact genetic polymorphisms that can potentially be used as biomarkers for colorectal cancer. This review comprehensively consolidates, based primarily on results from meta-analyses, the recent progresses in the search of colorectal cancer-associated genetic polymorphisms, and discusses the possible mechanisms involved.
    Matched MeSH terms: Molecular Epidemiology
  17. Sani NA, Sapri HF, Neoh HM, Hussin S
    BMC Res Notes, 2014;7:597.
    PMID: 25186825 DOI: 10.1186/1756-0500-7-597
    Staphylococcus epidermidis is a pathogen associated with nosocomial infections whose medical importance has increased due to progressively invasive medical procedures. In this study, we characterized the molecular epidemiology of S. epidermidis strains circulating in our university hospital situated in Kuala Lumpur, Malaysia.
    Matched MeSH terms: Molecular Epidemiology*
  18. Lemoh C, Ryan CE, Sekawi Z, Hearps AC, Aleksic E, Chibo D, et al.
    PLoS One, 2013;8(12):e84008.
    PMID: 24391866 DOI: 10.1371/journal.pone.0084008
    African-born Australians are a recognised "priority population" in Australia's Sixth National HIV/AIDS Strategy. We compared exposure location and route for African-born people living with HIV (PLHIV) in Victoria, Australia, with HIV-1 pol subtype from drug resistance assays and geographical origin suggested by phylogenetic analysis of env gene. Twenty adult HIV positive African-born Victorian residents were recruited via treating doctors. HIV exposure details were obtained from interviews and case notes. Viral RNA was extracted from participant stored plasma or whole blood. The env V3 region was sequenced and compared to globally representative reference HIV-1 sequences in the Los Alamos National Library HIV Database. Twelve participants reported exposure via heterosexual sex and two via iatrogenic blood exposures; four were men having sex with men (MSM); two were exposed via unknown routes. Eight participants reported exposure in their countries of birth, seven in Australia, three in other countries and two in unknown locations. Genotype results (pol) were available for ten participants. HIV env amplification was successful in eighteen cases. HIV-1 subtype was identified in all participants: eight both pol and env; ten env alone and two pol alone. Twelve were subtype C, four subtype B, three subtype A and one subtype CRF02_AG. Reported exposure location was consistent with the phylogenetic clustering of env sequences. African Australians are members of multiple transnational social and sexual networks influencing their exposure to HIV. Phylogenetic analysis may complement traditional surveillance to discern patterns of HIV exposure, providing focus for HIV prevention programs in mobile populations.
    Matched MeSH terms: Molecular Epidemiology*
  19. Sam IC, Chan YF, Chan SY, Loong SK, Chin HK, Hooi PS, et al.
    J Clin Virol, 2009 Oct;46(2):180-3.
    PMID: 19683467 DOI: 10.1016/j.jcv.2009.07.016
    BACKGROUND: Chikungunya virus (CHIKV) of the Central/East African genotype has caused large outbreaks worldwide in recent years. In Malaysia, limited CHIKV outbreaks of the endemic Asian and imported Central/East African genotypes were reported in 1998 and 2006. Since April 2008, an unprecedented nationwide outbreak has affected Malaysia.
    OBJECTIVE: To study the molecular epidemiology of the current Malaysian CHIKV outbreak, and to evaluate cross-neutralisation activity of serum from infected patients against isolates of Asian and Central/East African genotypes.
    STUDY DESIGN: Serum samples were collected from 83 patients presenting in 2008, and tested with PCR for the E1 gene, virus isolation, and for IgM. Phylogenetic analysis was performed on partial E1 gene sequences of 837bp length. Convalescent serum from the current outbreak and Bagan Panchor outbreak (Asian genotype, 2006) were tested for cross-neutralising activity against representative strains from each outbreak.
    RESULTS: CHIKV was confirmed in 34 patients (41.0%). The current outbreak strain has the A226V mutation in the E1 structural protein, and grouped with Central/East African isolates from recent global outbreaks. Serum cross-neutralisation activity against both Central/East African and Asian genotypes was observed at titres from 40 to 1280.
    CONCLUSIONS: The CHIKV strain causing the largest Malaysian outbreak is of the Central/East African genotype. The presence of the A226V mutation, which enhances transmissibility of CHIKV by Aedes albopictus, may explain the extensive spread especially in rural areas. Serum cross-neutralisation of different genotypes may aid potential vaccines and limit the effect of future outbreaks.
    Matched MeSH terms: Molecular Epidemiology/methods
  20. Khoo CH, Cheah YK, Lee LH, Sim JH, Salleh NA, Sidik SM, et al.
    Antonie Van Leeuwenhoek, 2009 Nov;96(4):441-57.
    PMID: 19565351 DOI: 10.1007/s10482-009-9358-z
    The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg microl(-1). This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.
    Matched MeSH terms: Molecular Epidemiology/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links